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Model Comparison

m Both models P, @ can be wrong.
m Goal: pick the better one.
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Problem Setting
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m R : data generating distribution (unknown).
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R : data generating distribution (unknown).
m Observe X, i P, Y, i Q, and Z, "%* R be three sets of samples,

each of size n.

Hy: P and @ equally model R
Hi;: @Q models R better.

m Formulate as

for some distance D.
Statistic: S, = E(P, R) — E(Q, R). Large, positive =— @ is better.
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Motivations

A common approach:
Compare D(P, R) and D(Q, R) estimated from samples (e.g., FID).
If E(Q, R) < 5(]3, R), conclude that @ is better than P.

Problems:

1 Noisy decision. D is random. — Statistical testing accounts for this.
2 Not interpretable. A scalar D is not informative enough.

m 1’s from @ are better. But 3’s from P are better.

m Our new interpretable test can output this information.
5/25



Review: Hypothesis Testing

Ho: D(
H1I D(

R)
R)

P,
P,

Test statistic: S, = D(P, R) — D(Q, R)
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The Witness Function (Gretton et al., 2012)
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The Witness Function (Gretton et al., 2012)

Observe Z, = {z1,...,2,} ~ R

Observe X,, = {x1,...,X,} ~ P
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The Witness Function (Gretton et al., 2012)

Gaussian kernel k£ on z;

Gaussian kernel k£ on x;
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The Witness Function (Gretton et al., 2012)

MMD(P, R) = HWitIleSSHRKHS
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The Unnormalized Mean Embeddings Statistic (Chwialkowski et al., 2015)

K—MR(V) = E,-rk(y,v)

:U'P(V) — Ewak(X’ V)
(mean embedding of P)

witness(v) = pr(v) — up(v)
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The Unnormalized Mean Embeddings Statistic (Chwialkowski et al., 2015)
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The Unnormalized Mean Embeddings Statistic (Chwialkowski et al., 2015)

witness®(v) = (ur(v) — pp(v))?

o @ — & A%

m Given J test locations V := {v; }]J:1 (V gives interpretability later)

UME?,(P, R) ZWltness (v;) = U3.
] 1
m UME?, will be D for model comparison.
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The Unnormalized Mean Embeddings (UME) Statistic

J
UME} (P, R) = U2 = = Y (kp(v;) — #a(v;)
j=1

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)
Assume

1 Kernel k s real analytic, integrable, and characteristic;
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The Unnormalized Mean Embeddings (UME) Statistic

J
UME} (P, R) = U2 = = Y (kp(v;) — #a(v;)
j=1

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)
Assume
1 Kernel k s real analytic, integrable, and characteristic;
2 V 1s drawn from m, a distribution with a density.

Then, for any J >0, any P and R,

UME?% (P,R) =0 iff P=R,
n-almost surely.

m Key: Evaluating witness? is enough to detect the difference (in theory).
® Runtime complexity: O(Jn). J is small.
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m Let ¢5 (= Exop[tv(x)] € RY. Let CF := covyup[9hv(x)] € RIXV.

Proposition (Asymptotic distribution of ’UT%)
If P#R, forany V, as n — o

V/n [UME% (P, R) - UME% (P, R)| 5 N(0,4¢2),

where (3 := (Y3, —93) " (CY + CP) Wy —97) > 0.

Main point: When P # R, UME?% (P, R) is
asymptotically normally distributed. Simple.

m But we will need the distribution of
S, = UME% (P, R) — UME%(Q, R) which is ... ?
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UME?, (P, R) and UME? (Q, R) are Correlated

= Write U2 = UME?(P, R) and U2 = UME?(Q, R).
m Let S := UJ%—U%. So Hy: S=0and H;: S >0.
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UME? (P, R) and UME?,(Q, R) are Correlated

= Write U2 = UME?(P, R) and U2 = UME?(Q, R).
m Let S := UI%—U%. So Hy: S=0and H;: S >0.

Proposition (Joint distribution of ff:% and Z/J’g)

Assume that P, Q and R are all distinct. Under mild conditions, for
any V,

U2 ([ U3 d (3 <Cpg
(%) ()2 7))
2 /n (S'n ~ S) 4N (0,4(4,% — 2pg + 429)).

So, asymptotic null distribution is normal. Easy to get T,.
m [1] — use theory of multivariate U-statistics

® [2] — continuous mapping theorem. Follows from [1].
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Choose Test Locations V = {v;}/ ; in Practice

m Pick V so as to maximize the test power .
m Hy: Up— U3 =0vs. H:U;- UC% > 0 (i.e., Q is better).
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Choose Test Locations V = {v;}/ ; in Practice

m Pick V so as to maximize the test power .
m Hy: U2 - U% =0vs. Hy:U:- U% > 0 (i.e., Q is better).

Test power = P(reject Hy | Hy true) = P(Decide Q better | Q better)

—— PH,
— T,

— PH

-2 0 2 4
Test statistic
m Split the data into tr and te. Optimize V on tr. Test on te.

m Optimized V show where @ is better than P.

f
m For large n, arg maxy power = arg maxy f( V) where f = 2oon 2P

std of py; -
Call f the power criterion .
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Rel-UME: Difference of Two Witness Functions

Recall the witness function between P and R:

witnessp r(v) = Exwpk(x,V) — E,rk(z, V)
for some positive definite kernel k(x, v).

Assume only one test location v. Recall

UMEZ(P, R) = witness} (v) = (up(v) — pr(v))?
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Rel-UME: Difference of Two Witness Functions

------ withesspr

------ witnesso,r
—— Power Cri.
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Rel-UME: Difference of Two Witness Functions

— P
— Q
— R
—————— thrxz;ggR
—————— thrxaaso,R
—— Power Cri.

S

m Power criterion(v) = f(v) is a function such that maximizing it
corresponds to maximizing the test power.
Witness%,R(v) - Witness%LR(v) Uz - Ué
1v) = standard deviation ( - 2 2
PoR(V) L [4(CE - 2po +(3)
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Where Does Each GAN Do Better?

[Goodfellow et al., 2014]
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Digit
m Set V = 40 (real) images of digit
i=0,...,09.
m Evaluate power criterion with n = 2000.

B Q is better at “1” and “b”. P is slightly
better at “3”. Interpretable.

[Goodfellow et al., 2014]
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Digit
m Set V = 40 (real) images of digit
i=0,...,09.
m Evaluate power criterion with n = 2000.

B Q is better at “1” and “b”. P is slightly
better at “3”. Interpretable.

[Goodfellow et al., 2014]

(Gaussian kernel on top of features from a CNN classifier.)
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Experiment on CIFAR10

— Cri. Wmm P R mmm Q
m P = {airplane, cat},
Q@ = {automobile, cat}
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Experiment on CIFAR10

— G, Wmm P R Q
m P = {airplane, cat},
Q@ = {automobile, cat}
m (true) R = {automobile, cat}
airplane  automobile cat

m Gaussian kernel on 2048 features extracted by the Inception-v3 network
at the pool3 layer.

300
Histogram of power criterion values f(v) eval-

200 uated at v = {airplane, automobile, cat}.

m All non-negative. — @ is equally
good or better than P everywhere.

100
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Experiment on CIFAR10

—— Cri. W P R Q
m P = {airplane, cat},
Q@ = {automobile, cat}
m (true) R = {automobile, cat}
airplane  automobile cat

m Gaussian kernel on 2048 features extracted by the Inception-v3 network
at the pool3 layer.

_
I‘m

Images v with the lowest values of
~ 0. — P, Q perform equally
Well in these regions.
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Experiment on CIFAR10

—— Cri. W P R Q
m P = {airplane, cat},
Q@ = {automobile, cat}
m (true) R = {automobile, cat}
airplane  automobile cat

m Gaussian kernel on 2048 features extracted by the Inception-v3 network
at the pool3 layer.

BWH
[ 3 ]
B Images v with the highest values of
) > 0. = Q is better than P in
these regions.
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Experiment on CelebA

Real smiling faces RS) Real non-smiling faces (NS)

m Two datasets for training two models.

m Center-cropped CelebA images to 64 x 64 pixels.
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Experiment on CelebA

Model for smiling faces (S) Model for non—smlhng faces (N

m Trained with DCGAN. Get two models.
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Experiment on CelebA

m Report avg rejection rate (e.g., rate of claiming @ is better).

m Fréchet Inception Distance (FID) (Heusel et al., 2017). Not a test. If
FID(P, R) > FID(Q, R), claim Q is better.
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Experiment on CelebA

m Report avg rejection rate (e.g., rate of claiming @ is better).

m Fréchet Inception Distance (FID) (Heusel et al., 2017). Not a test. If
FID(P, R) > FID(Q, R), claim Q is better.

B RS = real smiling images. RIN = real non-smiling images.

m RM = mixture of RS and RN

Case P Q@ R Truth Rel-UME
J10 J40

Rel- FID FID diff.
MMD

S S RS Notrej 0.0 00
RS RS RS Notrej 00 0.0
S N RN Rej 057 1.0
S N RM Notrej 0.0 0.0

L

0.0 0.53 -0.045 & 0.52
0.03 0.7 0.04 £0.19
1.0 10 525+£0.75
00 00 -4.55+0.82

m FID claims @ is better when the two models are equally good. Not

account for uncertainty.

m All have high test power when @ is indeed better.
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Problem Setting 2

m D, q : probability density functions up to the normalizer

m 7 : unknown data generating density (unknown).
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Problem Setting 2

P, q : probability density functions up to the normalizer

m 7 : unknown data generating density (unknown).

m Observe Z, “%% R and have explicit p, q.

Hy: p and q equally model r
Hi: g models r better.

m Formulate as

for some distance D.

Statistic: S, = ﬁ(p, r)— E(q, r). Large, positive = @ is better.
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The Finite Set Stein Discrepancy (FSSD) (NeurIPS 2017 Best Paper)

Recall witness(v) = E,r[kv(2)] — Ex~p[ky(x)]
Problem: No sample from p. Cannot estimate Ey.p[k,(x)].
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The Finite Set Stein Discrepancy (FSSD) (NeurIPS 2017 Best Paper)

Recall witness(v) = E,r[kv(2)] — Ex~p[ky(x)]
Problem: No sample from p. Cannot estimate Ey.p[k,(x)].

(Stein) witness(v) = E .| Tpk.(z) ]

Idea: Define T, such that Ex.p,(Tpk,)(x) = 0, for any v.

m UME defined with this new Stein witness function is called the
Finite-Set Stein Discrepancy (Jitkrittum et al., 2017).

m T, is called a Stein operator.

(Toky)(z) =

which is independent of the normalizer of p.

m Can construct Rel-F'SSD test similarly: optimize V to show where Q is
better, asymptotic normality, etc.
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F'SSD is a Proper Discrepancy Measure

m FSSD*(p,7) = 5 721 l|gp,r(v5)||3 where
gp,r(v) = Egur [ﬁ%[kv(z)p(z)]} (Stein witness).
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F'SSD is a Proper Discrepancy Measure

@ FSSD2(p, ) = & S/, llgp (v;)| where
gp,r(v) = Egur [ﬁ%[kv(z)p(z)]} (Stein witness).

Theorem (FSSD is a discrepancy measure (Jitkrittum et al., 2017))
Maan conditions:

1 (Nice kernel) Kernel k is Cy-universal, and real analytic e.g.,
Gaussian kernel.

2 (Vanishing boundary) lim -0 P(X)kv(x) = 0.
3 (Avoid “blind spots”) Locations vi,...,vy ~n which has a density.

Then, for any J > 1, n-almost surely,

FSSD? =0 < p=r. I

Summary: Evaluating the witness at random locations is sufficient to
detect the discrepancy between p, r.
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Relative FSSD Witness Function

m Unlike UME which cares about probability mass, FSSD cares about
shape of density functions .

m In FSSD, p, g are represented by Vy log p(x) and Vy log g(y) (instead
of samples).
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Experiment: 2d Blobs

10

m Problem in R2. Difference in small scale

relative to the global structure.

m g is closer to . So, H; is true.
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10 Y

m Problem in R2. Difference in small scale

4.- ii > relative to the global structure.

|
\“- £
l

m g is closer to . So, H; is true.

-10 —5 0 5 10
—— Rel-UMEJ1  —+— Rel-UMEJ5  ---- Rel-FSSDJI ~ —— Re-FSSDJ5 —— Rel-MMD
1.0]
40-’,; = Rel-MMD (Bounliphone et al.,
Z 2014) suffers from a wrong
'% 0.5 choice of Gaussian bandwidth.
> m Proposed Rel-UME, Rel-FSSD
o can optimize their parameters
0’0‘0_3 1 2 3 5 8 (maximizing test power).

Sample size n (x10?)
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m Problem in R2. Difference in small scale
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m g is closer to . So, H; is true.

o 5o 5 10
—— RekUMEJ1 ~ —+— Re-UMEJ5  ---- RekFSSDJI ~ —— Rel-FSSDJ5  —— Rel-MMD
10
m Rel-MMD (Bounliphone et al.,
O 10! 2014) suffers from a wrong
GE) choice of Gaussian bandwidth.
=10 — =T m Proposed Rel-UME, Rel-FSSD
10-1 can optimize their parameters
0.3 1 2 3 5 8 (maximizing test power).

Sample size n (x10%)
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Summary

Propose a model comparison test Relative UME :
m Statistical testing: account for randomness of the distance
m Linear-time: runtime complexity = O(n)
m Interpretable: tells where @ is better P (vice versa)

Another variant Relative FSSD : P, Q are explicit (unnormalized) density
functions. No need to sample.

Informative Features for Model Comparison
W. Jitkrittum, H. Kanagawa, P. Sangkloy, J. Hays, B. Scholkopf, A. Gretton

NeurIPS 2018
Python code: https://github.com/wittawatj/kernel-mod
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Questions?

Thank you
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Rewriting UME

B V:={vy,...,vs} = J test locations
J
1
UMES (P, B) = = S (up(v;) — pa(v,))?
j=1

27/25



Rewriting UME

B V:={vy,...,vs} = J test locations
J
1
UMES (P, B) = = S (up(v;) — pa(v,))?
j=1

( up(vi) ) ( pr(vi) ) ’
/JfP('VJ) #R(VJ)

2

27/25



Rewriting UME

B V:={vy,...,vs} = J test locations

> (ur(vy) = pa(vy))?

UME? (P, R) = !

J

*
J

Sl

k(z,v1) ]
k(Z;VJ)

2

2
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Rewriting UME

B V:={vy,...,vs} = J test locations
J
1
UMER (P, B) = 5 3 (e(v;) — #a(v))?
j=1

( up(vi) ) ( ur(v1) ) ’
1 ) )
=7 : - :
up(vy) kr(vy) 2
. k(x,v1) k(z,v1) 2
= 7 EXNP - EZNR
k(x,vJ) k(z,v )

2

Let ¢y (x) := % (k(x,v1),...,k(x,v;))" € R7. Equivalently,

UMEY/ (P, R) = [Exwp[¥v(x)] - Exur[v(2)]] -
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Rewriting UME
BV i={vy,..

UME? (P, R) = %

1
J

*
J

., vy} = J test locations

> (ur(vy) = pa(vy))?

pp(vi) ) ( pr(vi) )

/JfP('VJ) #R(VJ)

k(x,v1) k(z,v1) ’
: —Ezr :

k(x,vJ) k(z,v )

2

2

2

Let ¢y (x) := \/17 (k(x,v1),...,k(x,v;))" € R7. Equivalently,

UMEY/ (P, R) = [Exwp[¥v(x)] - Exur[v(2)]] -

m Empirical UME?(P, R) = replace E’s above with % PR

27/25



UME?, (P, R) and UME? (Q, R) are Correlated

m Write U3 = UME?(P, R) and U} = UME?*(Q, R).
m Let S := U}%—Ué. So Hy: S=0and H;: S >0.
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Write U = UME?(P, R) and U} = UME?*(Q, R).
Let S := U}%—Ué. So Hy: S=0and H;: S >0.
Let C¥ := covys[¥v(y)] where S € {P, Q, R}.
vy 97 0
0 Yu -9 )
Lot ( ¢? (o ) ::MT< Cy + CF QC5 )M
(r@ (5 (chH"  Cp+Cf

LetM:z(
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UME? (P, R) and UME?,(Q, R) are Correlated

Write U = UME?(P, R) and U} = UME?*(Q, R).
Let S := U}%—Ué. So Hy: S=0and H;: S >0.
Let C¥ := covys[¥v(y)] where S € {P, Q, R}.
vy 97 0
0 Yu -9 )
Lot ( ¢? (o ) ::MT< Cy +C¢ QC{? >M
(r@ (5 (chH"  Cp+Cf

LetM::<

Proposition (Joint distribution of f]:% and Z/]g)

Assume that P, Q and R are all distinct. Under mild conditions,

—

U\ U123>>d < (C;za CPQ)),
1ﬁ<<us> <Ué TN e @ )

2 V7 (8~ 5) 5N (0,4(¢2 ~ 2po +2))-
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UME? (P, R) and UME?,(Q, R) are Correlated

m Write U3 = UME?(P, R) and U} = UME?*(Q, R).
m Let S := U}%—Ué. So Hy: S=0and H;: S >0.
m Let C := covys[¥v(y)] where S € {P, Q, R}.
Yv—vv 0
m Let M = Q r |
0 Yy — YW
]

2 P R R
Let(cp CPZQ>::MT<CV"I:£V QCV R>M
Cpg €0 (CV) Cw+ Cw

Proposition (Joint distribution of f]:% and Z/]g)

Assume that P, Q and R are all distinct. Under mild conditions,

Z)-()574(& %))
1ﬁ<<us> <Ué TN e @ )
2 ﬁ(@n - S) 4N (0,4((,% — 2po + C%)).

So, asymptotic null distribution is normal. Easy to get T.
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Experiment: Mean Shift

m Model 1: p = N([0.5,0,...,0],I). Model 2: ¢ = N([1,0,...0],I)
m Data distribution 7 = N(0, I). Defined on R5C.
m Set o = 0.05. Should not reject Hp.
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m Data distribution 7 = N(0, I). Defined on R5C.
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Rejection rate

0.005

0.000+

—

— Fr—

1000
Sample size n

2000

Rel-UME J1
Rel-UME J5
Rel-FSSD J1
Rel-F'SSD J5
Rel-MMD
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Experiment: Mean Shift

m Model 1: p = N(]0.5,0,...,0],I). Model 2: ¢ = N([1,0,..
m Data distribution 7 = N(0, I). Defined on R5C.
m Set o = 0.05. Should not reject Hp.

0.01

—~

N
5]
=

2.951
=

1000 2000
Sample size n

m MMD runs in O(n?) time.

m Proposed Rel-UME and Rel-FSSD run in O(n).

Rel-UME J1
Rel-UME J5
Rel-FSSD J1
Rel-FSSD J5
Rel-MMD

.0],I)
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Experiment: Gaussian-Bernoulli Restricted Boltzmann Machine

m D, g, are all RBM models. d = 20 dimensions. n = 2000.
B gBbe(X) := £ Dnexp (XTBh +b'x+c'h- %HXHZ) where
he {-1,1}°.
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m D, g, are all RBM models. d = 20 dimensions. n = 2000.

B gBbe(X) := £ Dnexp (xTBh +b'x+c"h-— %HXHZ) where
he {-1,1}°.

m Define 7(x) := gB,b,c(x) for some randomly drawn B, b, c.

m Let p(x) 1= gBr b,c(x), and q(x) := gBa,b,c(x).
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Experiment: Gaussian-Bernoulli Restricted Boltzmann Machine

P, g, r are all RBM models. d = 20 dimensions. n = 2000.
9B b,c(X) := £ S exp (xTBh +b'x+c"h-— %HXHZ) where
he {-1,1}°.

Define r(x) := gB,b,c(x) for some randomly drawn B, b, c.
Let p(x) := gBr,bc(x), and q(x) := gBo,p,c(x).

B? = B but with € added to its first entry B; ;

B? = B but with 0.3 added to its first entry B ;

If € > 0.3, q is better. Should reject Hp.
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Experiment: Gaussian-Bernoulli Restricted Boltzmann Machine

1.0
g sol 1| |

e T 1

§0.5
e 2.5 |
2 =T

0.0 0.0f P

02 03 04 06 02 03 04 0.6

Perturbation €

Problem parameter

Rel-UME J1
Rel-UME J5
Rel-F'SSD J1
Rel-FSSD J5
Rel-MMD

m Models and and true distribution are very close. Difficult.

m F'SSD has access to the density. Higher power than UME, MMD (rely

on samples).
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What is Tpk,?

Recall Stein witness(v) = Eyq( Tpky)(y) — E v (X
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What is Tpk,?

Recall Stein witness(v) = Eyq( Tpky)(y) — E v (X
1 d
(Tpkv)(x) = m&[k(X:V)P(X)]-

Then, Exp( Tpky)(x) = 0.

[Liu et al., 2016, Chwialkowski et al., 2016]
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What is Tk, ?

Recall Stein witness(v) = Ey~q( Tpky)(y) — E v (X

Normalizer
cancels

Then, Exp( Tpky)(x) = 0.

[Liu et al., 2016, Chwialkowski et al., 2016]
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What is Tpk,?

Recall Stein witness(v) = Eyq( Tpky)(y) — E k) (X
(Tpky)(x) = ii[k(x,v)p x)]. Normalizer
p(x) dx cancels

Then, Exp( Tpky)(x) = 0.

[Liu et al., 2016, Chwialkowski et al., 2016]

Bap [Tk )001 = [ |0 (0| pocia

= [T L ko) ax
~ [k (X)P (R

(assume lim|y o k(v,x)p(x))
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