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Problem Setting: Goodness-of-Fit Test

q (unknown) p (model)

VAN

X1,X2,...,Xp

Test goal: Are data from the model p?

1 Nonparametric.

2 Linear-time. Runtime is O(n). Fast.

s Interpretable. Model criticism by finding *.
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Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

m Find a location v at which ¢ and p differ most [Jitkrittum et al., 2016].
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Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

m Find a location v at which ¢ and p differ most [Jitkrittum et al., 2016].

score: 0.008

witness(v) = Equ[/iv\ Eypl /\

|witness(v)|

score(v) = standard deviation(v)’

4/11



Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

m Find a location v at which ¢ and p differ most [Jitkrittum et al., 2016].

score: 1.6

witness(v) = Equ[/‘i\] — Eypl V ]

score(v) |witness(v)|
v) = .
standard deviation(v)
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Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

m Find a location v at which ¢ and p differ most [Jitkrittum et al., 2016].
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m Find a location v at which ¢ and p differ most [Jitkrittum et al., 2016].
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Model Criticism by Maximum Mean Discrepancy [Gretton et al., 2012]

m Find a location v at which ¢ and p differ most [Jitkrittum et al., 2016].

score: 25

witness(v) = Equ[/‘i\] — Eypl V ]

B |witness(v)| \ No sample from p.
score(v) = standard deviation(v) ™  Difficult to generate.
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The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate E [k, (y)]-
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The Stein Witness Function [Liu et al., 2016, Chwialkowski et al., 2016]

Problem: No sample from p. Cannot estimate E [k, (y)]-
(Stein) witness(v) = Exwq| Tpke(x) |

Idea: Define T}, such that Ey.,(Tpk,)(y) =0, for any v.

Proposal: Good v should have high

it
score(v) = |witness(v)|

signal-to-noise ) ~ standard deviation(v)’
ratio

m score(v) can be estimated in linear-time.
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Proposal: Model Criticism with the Stein Witness
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What is T, k,?

Recall witness(v) = Exq( Tpkv)(x) — E iy ) (Y

Normalizer
cancels

Then, Eyp(Tpky)(y) = 0.

[Liu et al., 2016, Chwialkowski et al., 2016]
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Technical Details

Theorem: Maximizing

it
score(v) — |witness(v)|

uncertainty(v)

= increases true positive rate
= P(detect difference when p # gq),

8/11



Technical Details

Theorem: Maximizing

it
score(v) = |witness(v)|

uncertainty(v)

= increases true positive rate
= P(detect difference when p # gq),

» does not affect false positive rate.

8/11



Technical Details

Theorem: Maximizing

it
score(v) — |witness(v)|

uncertainty(v)

= increases true positive rate
= P(detect difference when p # gq),

» does not affect false positive rate.

= General form: score(vy,...,v) with J test
locations.
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Experiment: Restricted Boltzmann Machine (RBM)

40 hidden units/'N Perturb one weight

50 visible units

Model p
A @0'75 Proposed

g K-/ (linear-time)

8| £0.50]

B <

=l B 0.95 MMD test
% : —(quadratic-time)
g/ [Gretton et al., 2012]
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Interpretable Features: Chicago Crime
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R o ".‘ m n = 11957 robbery events
N % PR in Chicago in 2016.
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A * lat/long coordinates =
Kl — sample from gq.
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Interpretable Features: Chicago Crime
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Interpretable Features: Chicago Crime

Score surface
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Interpretable Features: Chicago Crime
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Interpretable Features: Chicago Crime

% = optimized v.
No robbery in Lake Michigan.
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Interpretable Features: Chicago Crime
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Interpretable Features: Chicago Crime

Capture the right tail better.
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Interpretable Features: Chicago Crime

Still, does not capture the left
tail.
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Interpretable Features: Chicago Crime

Still, does not capture the left
tail.

Learned test locations are
interpretable.
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Conclusions

Proposed a new goodness-of-fit test.
1 Nonparametric. Normalizer not needed.
2 Linear-time
3 Interpretable

Poster #£57 tonight
Python code: https://github.com/wittawatj/kernel-gof
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https://github.com/wittawatj/kernel-gof

Questions?

Thank you
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EFSSD and KSD in 1D Gaussian Case
Consider p = N'(0,1) and g = N (g, 07).
m Assume J = 1 feature for nFSSD2. Gaussian kernel (bandwidth =
2
oi).

(=ra)?
T e2402 2
ote %t ((02+1) pg+v (o2 —1))
FSSD? = 3 - :
(Jk + Uq)

0.2
mIf g #0,0;#1,and v = —%, then FSSD? =0 !

This is why v should be drawn from a distribution with a density.
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m Assume J = 1 feature for nFSSD2. Gaussian kernel (bandwidth =
2
oi).

(=ra)?
T e2402 2
ote %t ((02+1) pg+v (o2 —1))
FSSD? = 3 - :
(Jk + Uq)

2
mIfp, # 0,03 #1,and v = —%, then FSSD? =0 !
2
This is why v should be drawn from a distribution with a density.
m For KSD, Gaussian kernel (bandwidth = &2).

oo B2 4200 4 (53 -1)?

(K,2 +203) 208 +1

K/2
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What is T, k,?

Recall witness(v) = Exq( Tpkv)(x) — E iy ) (Y
1 d Normalizer
Tok)(y) = —— ——[k(y, .
(Tpkv)(y) o0y) dy[ (v, v)p(y)] oncels

Then, Eyp(Tpky)(y) = 0.
[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:

(o)

By (TR = [ (Tyh)(3)] p(y)dy

—Oo0
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What is T, k,?

Recall witness(v) = Exq( Tpkv)(x) — E iy ) (Y

_ Li v Normalizer
(TPkV)(y) - p(y) dy [k(Y: )p Y)] cancels

Then, Eyp(Tpky)(y) = 0.

[Liu et al., 2016, Chwialkowski et al., 2016]
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What is Tpk,?

Recall witness(v) = Exq( Tpkv)(x) — E iy ) (Y

Li v Normalizer
(Tpko)(y) = o0y dy [k(y, v)p(¥)]- mcels

Then, Eyp(Tpky)(y) = 0.
[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:
1 d

Byep (BRI = [ [Mdy B (y)p <y)]} Py dy

_/wd
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What is Tpk,?

Recall witness(v) = Exq( Tpkv)(x) — E iy ) (Y

_ Li v Normalizer
(TPkV)(y) - p(y) dy [k(Y: )p Y)] cancels

Then, Eyp(Tpky)(y) = 0.

[Liu et al., 2016, Chwialkowski et al., 2016]

Proof:
Ep (TohION = [ | f 0P| péyTay
= /_ o:o d;iy[kv(y)p(y)] dy

= [k (Y)P(¥)="0
=0

(assume limyy o kv (¥)P(y))
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F'SSD is a Discrepancy Measure

Theorem 1.

Let V ={vi,...,v;} C R? be drawn i.i.d. from a distribution n which
has a density. Let X be a connected open set in R%. Assume

1 (Nice RKHS) Kernel k: X x X — R is Cy-unwversal, and real
analytic.

2 (Stein witness not too rough) ||g||2 < 0.
3 (Finite Fisher divergence) Ex.4||Vx log %W <00 .
4 (Vanishing boundary) limx|»e P(X)g(x) = 0.

Then, for any J > 1, n-almost surely

FSSD? = 0 if and only if p = q. I

m Gaussian kernel k(x,Vv) = exp (—”le%) works.

20%
m In practice, J =1or J =5.
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What Are “Blind Spots”?

1 d

(V) : = By | o5 ()2 (0)

d

= B | (55 08500 ) () + Bk ()] € B

dx

Consider p = N(0,1) and ¢ = N(0,02). Use unit-width Gaussian kernel.

0.25

’U2
v exp (_2+203) (03 - 1) 0.00
g(v) = 3/2 '
(1+ crg)

—0.25
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What Are “Blind Spots”?
d
() = B [ o 2 () (0]

d

= B | (55 08500 ) () + Bk ()] € B

Consider p = N(0,1) and ¢ = N(0,02). Use unit-width Gaussian kernel.

0.25
2 2
v exp (_2+U20§) (03 - 1) 0.00
g(v) = 3/2 '
(1+ crg)

—0.25

—50 -25 00 25 50
m If v = 0, then FSSD? = g2(v) = 0 regardless of o2.
m If g #0, and k is real analytic, R = {v | g(v) = 0} (blind spots) has
0 Lebesgue measure.
m So, if v ~ a distribution with a density, then v ¢ R. 16/11



Asymptotic Distributions of FSSD?

m Recall ¢{(x,V) := ﬁd%[k(x, v)p(x)] € R%

m 7(x) := vertically stack £(x,v1),...£€(x,vs) € R, Features of x.

m Mean feature: p:= Exq[T(x)].
B 3, = covyr[T(x)] € R4 for r € {p, ¢}
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m Recall ¢{(x,V) := ﬁd%[k(x, v)p(x)] € R%

m 7(x) := vertically stack £(x,v1),...£€(x,vs) € R, Features of x.
m Mean feature: p:= Exq[T(x)].

B 2, 1= cover|T(X)] € R¥X4 for » € {p, q}
Proposition 1 (Asymptotic distributions).
Let Zy,..., 445 g N(0,1), and {w;}¥/, be the eigenvalues of %,,.
1 Under Hy: p = q, asymptotically nFSsD? & Zfil( 2 — Dw;.
Stmulation cost independent of n.

2 Under Hy : p # q, we have \/ﬁ(FgéB2 — FSSD?) LY N(0,0%,)
where 0?{1 = 4p S p. Implies P(reject Hy) — 1 as n — oo.

But, how to estimate 3,7 No sample from p!

m Theorem: Using 33, (computed with {x;}7 ; ~ ¢) still leads to a
consistent test.
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope =~ rate of p-value — 0 under H; as n — 0.
m Measure a test’s sensitivity to the departure from Hj.
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope =~ rate of p-value — 0 under H; as n — 0.
m Measure a test’s sensitivity to the departure from Hj.

Hol 0= 0,

Hli 6 75 0.

m Typically pval,, &~ exp (—%c(@)n) where c(6) > 0 under Hj, and
¢(0) = 0 [Bahadur, 1960].
m c(6) higher — more sensitive. Good.

1.0
1
. i)
= 2
T'?s 0.5 Trg )
(@
0.0
0 50 100
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Bahadur Slope and Bahadur Efficiency

Bahadur slope % rate of p-value — 0 under H; as n — oo.
Measure a test’s sensitivity to the departure from Hy.

H0:9:0,
H19750

Typically pval,, ~ exp (—%c(@)n) where c(6) > 0 under Hj, and
¢(0) = 0 [Bahadur, 1960].

m c(6) higher — more sensitive. Good.
1.0
Bahadur slope
=
log (1 — F(T;

= c(f) := —2 plim %8 ( ( n)),
> n—o0 n

|

@F

where F'(t) = CDF of T, under Hp.

m Bahadur efficiency = ratio of slopes

of two tests. 18/11




Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N (pq, 1).

m Assume J = 1 location for nFSSD?. Gaussian kernel (bandwidth =
2
o
k) 3 22 - _zﬂq)z
(FSSD) n U% (U% + 2) /J%edk 2 o241
¢ (/-‘qa U, Uk) - 2 9 6 4 9 :
& +1(0f +1) (of +4og + (v? +5) 0f +2)
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N (pq, 1).

m Assume J = 1 location for nFSSD?. Gaussian kernel (bandwidth =
2
Uk) 3 22 _( —zﬂq)z
(FSSD) 2y 0’% (U}% + 2) #2 ay +2 of+1
¢ (/-‘Qa U, Uk) - 2 9 6 4 5 9 :
& +1(0f +1) (of +4og + (v? +5) 0f +2)

m For LKS, Gaussian kernel (bandwidth = «?2).

(52" (52 +4)°

(LKS)(
2(k? + 2) (k® + 8k5 + 21Kk% + 20K2 + 12)

H, k) =
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Gaussian Mean Shift Problem
Consider p = N(0,1) and g = N (pq, 1).

e,

m Assume J = 1 location for nFSSD?. Gaussian kernel (bandwidth =
2
%)
(”—#4)2

»2
3 215 o2
2 2 2 0542 of+41
oi (0} +2)" pge™™
2
k

PSSP (g, v, 07) = —= PR P
& +1(0f +1) (of +4og + (v? +5) 0f +2)

m For LKS, Gaussian kernel (bandwidth = «?2).

(52" (52 +4)°

(LKS)(
2(k? + 2) (k® + 8k5 + 21Kk% + 20K2 + 12)

H, k) =

Theorem 2 (FSSD is at least two times more efficient).

Fiz 02 =1 for nFSSD2. Then, Vg, # 0, Jv € R, Vk? > 0, we have

Bahadur efficiency
cFSSD) (g, v, 03)

) (4, 62)
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Linear-Time Kernel Stein Discrepancy (LKS)

m [Liu et al., 2016] also proposed a linear version of KSD.

m For {x;}7 ; ~ g, KSD test statistic is

‘1‘2345673

2 s
mzhp(xi,xj)- :

1<J

m LKS test statistic is a “running average”

1‘2345678

5 n/2
- > hp(x2i1,X2:).

1=1

~| o af & w| N| -

8

m Both unbiased. LKS has O(d?n) runtime.
m X LKS has high variance. Poor test power.
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Bahadur Slopes of FSSD and LKS

Theorem 3.

The Bahadur slope of nFSSD? s
c(FSSD) . — FSSD? /ws,

where wy 1s the mazimum eigenvalue of Xy 1= covxp[T(X)].
TheA Bahadur slope of the linear-time kernel Stein (LKS) statistic
V/nS? is
(LKS) _ E[thp(X, XI)]z
2 E, [hg(x, x’)} ’
where h, 1s the U-statistic kernel of the KSD statistic.

Cc
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Illustration: Optimization Objective

m Consider J = 1 location.

m Training objective F%S% (gray), p in wireframe, {x;}]"; ~ ¢ in
H

purple, % = best v.

ol 1) oo (3 2))

FSSD?/a7;,

=

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00 22/11




Illustration: Optimization Objective

m Consider J = 1 location.

m Training objective F%S% (gray), p in wireframe, {x;}]"; ~ ¢ in
H
purple, % = best v.

p =N (0,1I) vs. ¢ = Laplace with same mean & variance.

0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

FSSD?/57;,
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Simulation Settings

2
20,

m Gaussian kernel k(x, v) = exp (J|x—v|§>

Method Description

1  FSSD-opt Proposed. With optimization. J = 5.
2 FSSD-rand Proposed. Random test locations.
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Simulation Settings

m Gaussian kernel k(x, v) = exp (_”x—"@>

20%
Method Description
1  FSSD-opt Proposed. With optimization. J = 5.
FSSD-rand Proposed. Random test locations.
3 KSD Quadratic-time kernel Stein discrepancy
[Liu et al., 2016, Chwialkowski et al., 2016]
4 LKS Linear-time running average version of KSD.
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Simulation Settings

: — _ Ix=vii3
m Gaussian kernel k(x,Vv) = exp o7
k

Method Description

1  FSSD-opt Proposed. With optimization. J = 5.
FSSD-rand Proposed. Random test locations.

Quadratic-time kernel Stein discrepancy

KSD
3 S [Liu et al., 2016, Chwialkowski et al., 2016]
4 LKS Linear-time running average version of KSD.
5 MMD-opt Ml\/.ID.tW(?—sample test [Gretton et al., 2012]. With
optimization.
6  ME-test Mean Embeddings two-sample test

[Jitkrittum et al., 2016]. With optimization.

m Two-sample tests need to draw sample from p.
m Tests with optimization use 20% of the data.
m o = 0.05. 200 trials.
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Gaussian Vs. Laplace

m p = Gaussian. ¢ = Laplace. Same mean and variance. High-order
moments differ.
m Sample size n = 1000.

1.0
8 —s— [FSSD-opt
- --a--  [F'SSD-rand
2
g0 —e— KSD
g A —e— LKS

0.04 frmsmmae——A | —«— MMD-opt

1 ) 10 15
dimension d — ME-opt

m Optimization increases the power.
m Two-sample tests can perform well in this case (p, g clearly differ).
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Harder RBM Problem

m Perturb only one entry of B € R%9%40 (in the RBM).

m By < Bi1+N(0,02, =0.1%).

Rejection rate

<
o
S

e
-~
ot

=
ot
S

<
[N
Ct

‘h=====:==1h=-.n..=‘F=;;;;E;E‘

2000 4000
Sample size n

FSSD-opt
FSSD-rand
KSD

LKS
MMD-opt
ME-opt

m Two-sample tests fail. Samples from p, ¢ look roughly the same.
m FSSD-opt is comparable to KSD at low n. One order of magnitude

faster.
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m Perturb only one entry of B € R%9%40 (in the RBM).
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