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What Is Independence Testing?

m Let (X, Y) € R% x R% be random vectors following Py .
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What Is Independence Testing?

Let (X, Y) € R% x R% be random vectors following Py .
Given a joint sample {(x;,y;)}7_; ~ Pgy (unknown), test
Hy :Pyy = P, Py,
vs. Hy :Ppy # P Py.

Compute a test statistic 5\n. Reject Hy if 5\n > T, (threshold).
Ta = (1 — a)-quantile of the null distribution.
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Motivations

Modern state-of-the-art test is HSIC [Gretton et al., 2005].

m /' Nonparametric i.e., no assumption on P,. Kernel-based.
m X Slow. Runtime: O(n?) where n = sample size.

m X No systematic way to choose kernels.
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Motivations

Modern state-of-the-art test is HSIC [Gretton et al., 2005].
m /' Nonparametric i.e., no assumption on P,. Kernel-based.
m X Slow. Runtime: O(n?) where n = sample size.

m X No systematic way to choose kernels.

Propose the Finite-Set Independence Criterion (FSIC).

1 Nonparametric.
2 Linear-time. Runtime complexity: O(n). Fast.

3 Adaptive. Kernel parameters can be tuned.
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Proposal: The Finite-Set Independence Criterion (FSIC)

1 Pick 2 kernels: k for X, and [ for Y (e.g., Gaussian kernels).
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Proposal: The Finite-Set Independence Criterion (FSIC)

1 Pick 2 kernels: k for X, and [ for Y (e.g., Gaussian kernels).
2 Pick a feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), {(y,w)) then measure covariance
R% xR% > R xR

FSIC*(X, Y) = coviy ), [k(x, V), Iy, w)].

+  Data * (v, w)

correlation: 0.97
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1 Pick 2 kernels: k for X, and [ for Y (e.g., Gaussian kernels).
2 Pick a feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), {(y,w)) then measure covariance

R% x R% 5> RxR

FSIC*(X, Y) = coviy ), [k(x, V), Iy, w)].

+  Data * (v, w)

correlation: -0.47
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1 Pick 2 kernels: k for X, and [ for Y (e.g., Gaussian kernels).
2 Pick a feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), {(y,w)) then measure covariance
R% xR% > R xR

FSIC*(X, Y) = coviy ), [k(x, V), Iy, w)].

+  Data * (v, w)

correlation: 0.33
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Proposal: The Finite-Set Independence Criterion (FSIC)

1 Pick 2 kernels: k for X, and [ for Y (e.g., Gaussian kernels).
2 Pick a feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), {(y,w)) then measure covariance
R% xR% > R xR

FSIC*(X, Y) = coviy ), [k(x, V), Iy, w)].

+  Data * (v,w) correlation: 0.023
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Proposal: The Finite-Set Independence Criterion (FSIC)

1 Pick 2 kernels: k for X, and [ for Y (e.g., Gaussian kernels).
2 Pick a feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), {(y,w)) then measure covariance

R% x R% 5> RxR

FSIC*(X, Y) = coviy ), [k(x, V), Iy, w)].

Data

correlation: 0.025
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Proposal: The Finite-Set Independence Criterion (FSIC)

1 Pick 2 kernels: k for X, and [ for Y (e.g., Gaussian kernels).
2 Pick a feature (v,w) € R% x R%

3. Transform (x,y) — (k(x, V), I(y,w)) then measure covariance
R% x R% — R x R

FSIC*(X, Y) = coviy ), [k(x, V), Iy, wW)].

*  Data *  (v.w) correlation: 0.087
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General Form of FSIC

FSIC?(X,Y) Zcov(x,y ~ Py [R(X, V), Wy, wi)]

for J features {(Vj,Wj)}jzl € R% x R%,

5/10



General Form of FSIC

FSIC?(X,Y) Zcov(x,y ~ Py [R(X, V), Wy, wi)]

for J features {(Vj,Wj)}jzl € R% x R%,
Proposition 1.

1 k and l: vanish at infinity, translation-invariant, characteristic,
real analytic (e.g., Gaussian kernels).

2 Features {(v;, w;)};,_, are drawn from a distribution with a density.

Then, for any J > 1,
Almost surely, FSIC(X,Y) =0 #ff X and Y are independent
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General Form of FSIC

FSIC?(X,Y) Zcov(x,y ~ Py [R(X, V), Wy, wi)]

for J features {(Vj,Wj)}jzl € R% x R%,

Proposition 1.

1 k and l: vanish at infinity, translation-invariant, characteristic,
real analytic (e.g., Gaussian kernels).

2 Features {(v;, w;)};,_, are drawn from a distribution with a density.

Then, for any J > 1,
Almost surely, FSIC(X,Y) =0 #ff X and Y are independent

Under Hyp : Py = PPy,
nF/SiE2 ~ weighted sum of J dependent x? variables.
m Difficult to get (1 — a)-quantile for the threshold.
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Normalized FSIC (NFSIC)

.
m Let 11— (c/on[k(x, Vl),l(y,wl)],...,c/oT/'[k(X,vj),l(y,WJ)]) € R,

m Then, FSIC? = LaT4.
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.
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m Then, FSIC? al

1A -~
7 u.

~

NFSIC2(X, V) = An =ni (S +7,1) 14,

with a regularization parameter v, > 0.

m X;; = covariance of 4; and 4.
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Normalized FSIC (NFSIC)

.
m Let 11— (EC)Tf[k(x, vl),z(y,wl)],...,saf[k(x,vj),z(y,wj)]) € R,

m Then, FSIC? al

1A -~
7 u.

~

NFSIC2(X, V) = An = nit' (54 y0) 4,
with a regularization parameter v, > 0.
[ i}ij = covariance of %; and ;.

Theorem 1 (NFSIC test is consistent).
Assume v, — 0, and same conditions on k and [ as before.
1 Under Hy, A, 4 x?(J) as n — 00. Easy to get threshold T,.

2 Under Hy, P(reject Hy) — 1 as n — 0.

m Complexity: O(J%+ J%n + (d; + dy)Jn). Only need small J.
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Tuning Features and Kernels

m Split the data into training (tr) and test (te) sets.

Procedure:
1 Choose {(v;,w;)}/_, and Gaussian widths by maximizing A4) (i.e.,
computed on the training set). Gradient ascent.

2 Reject Hy if Al (1 — a)-quantile of x?(J).

m Splitting avoids overfitting.

m The optimization is also linear-time.
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Tuning Features and Kernels

m Split the data into training (tr) and test (te) sets.

Procedure:
1 Choose {(v;,w;)}/_, and Gaussian widths by maximizing A4) (i.e.,
computed on the training set). Gradient ascent.

2 Reject Hy if Al (1 — a)-quantile of x?(J).

m Splitting avoids overfitting.

m The optimization is also linear-time.

Theorem 2.

1 This procedure increases a lower bound on P(reject Hy | H1 true)
(test power).

2 Asymptotically, if Hy s true, false rejection rate is a.
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Simulation Settings

m Gaussian kernels
o k(x,v) = exp( ”"27"“) for X

e l(y,w) =exp (—%) for Y

s=—=a NFSIC-opt =.-s NFSIC-med e—e QHSIC »—=+ NyHSIC +—+ FHSIC +~— RDC

Method Description
1 NFSIC-opt NFSIC with optimization. O(n).
QHSIC

ofthe. 2
[Gretton et al., 2005] State-of-the-art HSIC. O(n?).

Lopez-Paz et al., 2013

m J =10 in NFSIC.
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Youtube Video (X)) vs. Caption (Y).

m X € R?000; Risher vector encoding of motion boundary histograms

descriptors [Wang and Schmid, 2013].
m Y € R'878: Bag of words. Term frequency.
m a=0.01.

1.0

Test power
e}
Ot

2000 4000 6000 8000
Sample size n

QHSIC

m For large n, NFSIC is comparable to HSIC.
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m X € R?000; Risher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].

m Y € R'878: Bag of words. Term frequency.

m a=0.01.

Lo Q/TQHSIC

| Proposed
NFSIC

Test power
e}
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Youtube Video (X)) vs. Caption (Y).

m X € R?000; Risher vector encoding of motion boundary histograms
descriptors [Wang and Schmid, 2013].
m Y € R'87: Bag of words. Term frequency.

m o = 0.01.
§ 0.021
)
- Exchange
2.0.01 X, Y) pai
2 — (X, pairs.
P‘ --------------------- W HO true

2000 4000 6000 8000
Sample size n

m For large n, NFSIC is comparable to HSIC.
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Conclusions

m Proposed The Finite Set Independence Criterion (FSIC)

m FSIC(X,Y)=0 < X and Y are independent.
m Independece test based on FSIC is

1 nonparametric (no parametric assumption on Py),
2 linear-time,
3 adaptive (parameters automatically tuned).

m Python code: github.com/wittawatj/fsic-test

Poster #£111. Tonight.
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github.com/wittawatj/fsic-test

Questions?

Thank you
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Requirements on the Kernels

Definition 1 (Analytic kernels).

k: X x X — R is said to be analytic if for all x € X, v — k(x, V) is a real
analytic function on X.

m Analytic: Taylor series about xg converges for all xg € X.

B — k is infinitely differentiable.
Definition 2 (Characteristic kernels).
m Let up(v) :=E,uplk(z, v)].

k is said to be characteristic if up is unique for distinct P. Equivalently,
P — pup is injective.

Space of distributions RKHS
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Optimization Objective = Power Lower Bound

~ N -1
= Recall }, := nit’ (z: + fan) .

m Let NFSIC?(X,Y) := A, := nu' & u.

13/10



Optimization Objective = Power Lower Bound

~ N -1
= Recall }, := nit’ (z: + fan) .

m Let NFSIC?(X,Y) := A, := nu' & u.

Theorem 3 (A lower bound on the test power).

1 With some boundedness assumptions, the test power
Py, (5\“ > Ta> > L()\,) where

13/10



Optimization Objective = Power Lower Bound

~ N -1
= Recall }, := nit’ (z: + fan) .

m Let NFSIC?(X,Y) := A, := nu' & u.

Theorem 3 (A lower bound on the test power).

1 With some boundedness assumptions, the test power
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Optimization Objective = Power Lower Bound

~ N -1
= Recall }, := nit’ (z: + fan) .

m Let NFSIC?(X,Y) := A, := nu' & u.

Theorem 3 (A lower bound on the test power).

1 With some boundedness assumptions, the test power
Py, (5\“ > Ta> > L()\,) where
L(An) = 1 — 62e~6720n=Ta)?/n _ 9 =1057]0n—Ta)?/[e2n7]

_ e[ Ta)1a(n=1)/3—Esn—csnZn(n—1)]*/[¢an?(n—1)]

where 1, ...,&4, c3 > 0 are constants.

2 For large n, L(\,) is increasing in A,.

Set test locations and Gaussian widths = argmax L(A,) = argmax A,
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An Estimator of N?SI\C2

An = nil (z: + fan)*l a,
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An Estimator of N?SI\C2

~

. -1
An = nil (z: + fan) a,
m J test locations {(vi,w;)}/ ; ~ 7.

m K = [k(vi,x;)] € R7X"
m L = [l(w;,y;)] € R7*™. (No n x n Gram matrix.)
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An Estimator of N?SI\C2

Api=nia’ <f} +fan)71 1,

m J test locations {(vi,w;)}/ ; ~ 7.
m K = [k(vi,x;)] € R7X"
m L = [l(w;,y;)] € R7*™. (No n x n Gram matrix.)

Estimators
. (KoL)1, (K1,)o(L1,)
Lu="—=—1 - n(n-1)

~

2 5 ="TC0 where I':= (K — n"'K1,1]) o (L — n~'L1,17) — a1].

n

m )\, can be computed in O(J% + J?n + (d; + dy)Jn) time.

Main Point: Linear in n. Cubic in J (small).
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Alternative View of FSIC

FSIC}(X,Y) = cov%x’y)NPmy [k(x,V), (y,w)].
Rewrite cov:

covxy[k(x, V), Iy, w)]
= Exy[k(x: v)i(y, W)] - Ex[k(X: v)]Ey[l(y, W)]’

vV, W) — piz(V)py(w) (witness function)

froy(v, W) fro (V) oy (W) Witness function
m FSIC = evaluate the witness function at J locations. Cost: O(Jn).
m HSIC = RKHS norm of the witness function. Cost: O(n?).

i
=
€
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HSIC vs. FSIC

Recall the witness

UV, W) = flay (v, W) = (V) iy (w).

HSIC [Gretton et al., 2005]
= [|%/[rxns

— witness

(v, w)

Good when difference between
Dy and p.ypy is spatially diffuse.

m 4 is almost flat.

FSIC [proposed|
= % E:L]Zl ﬁZ(Vi, Wi)

— witness

(v, w)

*

Fede
Good when difference between
Pzy and pgypy is local.

m 4 is mostly zero, has many
peaks (feature interaction).
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Toy Problem 1: Independent Gaussians

m X ~N(0,Iz)and Y ~ N(0,Ig).
m Independent X, Y. So, Hp holds.
m Set o :=0.05, d; = d, = 250.
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Sample size n

m Correct type-I errors (false positive rate).
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Toy Problem 1: Independent Gaussians

m X ~N(0,Iz)and Y ~ N(0,Ig).
m Independent X, Y. So, Hp holds.
m Set o :=0.05, d; = d, = 250.

|l—l NFSIC-opt =.-8 NFSIC-med e—e QHSIC *—= NyHSIC +— FHSIC — RDC|

@ 102 /

- %
=

£

10° ——————4————&——f—-————*’f:::::

b o - -
o 10° 107 10" 10°
Sample size n Sample size

m Correct type-I errors (false positive rate).

17/10



Toy Problem 2: Sinusoid

B pyy(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, ).
m Local changes between p;y; and p;py.
m Set n = 4000.
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Toy Problem 2: Sinusoid

B pyy(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, ).
m Local changes between p;y; and p;py.
m Set n = 4000.
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Toy Problem 2: Sinusoid

B pyy(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, ).
m Local changes between p;y; and p;py.
m Set n = 4000.
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Toy Problem 2: Sinusoid

B pyy(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, ).
m Local changes between p;y; and p;py.
m Set n = 4000.

o
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Toy Problem 2: Sinusoid

B pyy(z,y) x 1+ sin(wz)sin(wy) where z,y € (—m, ).
m Local changes between p;y; and p;py.
m Set n = 4000.

|'—¢ NFSIC-opt =.-m NFSIC-med e—e QHSIC »—+ NyHSIC +—+ FHSIC — RDC|

1.01

w = 4.00 500
5] 2.5 o000 @® 1'75
£ e®eeeec® |
=0.5 @s0c0ces .
Z 00...'.-.. 100
= adl KX KX KX X 0.75
— e@eme®e® |

i, ce@ec0cee |
0.0 1 2 3 4 5 6 -2.5 :.2'2.2. 0.25
w in 1+ sin(wz) sin(wy) —25 0.0 25 000

Main Point: NFSIC can handle well the local changes in the joint space. I
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Toy Problem 3: Gaussian Sign

m y = |Z|[1%, sign(z;), where x ~ N(0, I3,) and Z ~ N(0, 1) (noise).
m Full interaction among zi, ..., z4,.
m Need to consider all zj, ..., z4 to detect the dependency.

1.01

Test power
-)
o

=
o

105 19/10
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Test Power vs. J

m Test power does not always increase with J (number of test locations).
m n = 800.

w = 2.00 )0 10
L
RS | o
Se®e - -
2,00 ® @ 0-25 10 200 400 600
—2.5 0.0 2.5 ' J

m Accurate estimation of 33 € R/*7 in \,, = ni1 ' (f} + ’an) 1l becomes
more difficult.

m Large J defeats the purpose of a linear-time test.
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Real Problem: Million Song Data
Song (X) vs. year of release (Y)

m Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].

m X € R contains audio features.

m Y € R is the year of release.
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Real Problem: Million Song Data

Song (X) vs. year of release (Y')
m Western commercial tracks from 1922 to 2011
[Bertin-Mahieux et al., 2011].
m X € R contains audio features.
m Y € R is the year of release.
|=—= NFSIC-opt =-= NFSIC-med — QHSIC

* NyHSIC +—+ FHSIC ~— RDC

1.0 = .
S 0.02- 5 :
5 z
< 0.01 5
o 98} 1
EE? éﬁ 0.5
0.001 | | , ‘ | | |
500 1000 1500 2000 500 1000 1500 2000

Sample size n Sample size n

m Break (X, Y) pairs to simulate Hp.
NFSIC-opt has the highest power among the linear-time tests.
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Alternative Form of 4(v, w)

m Recall FSIC? = %Z;]:l vy, wy)?
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Alternative Form of 4(v, w)

m Recall FSIC? = %Z;]:l vy, wy)?
m Let fzuy (v, w) be an unbiased estimator of pg(v)uy(Ww).
B fofiy(v, W) = ﬁ 211 2j#i k(xqi, v)Uy;, w).
® An unbiased estimator of u(v,w) is
a(v,w) = /:Lzy(V, w) — /-Z/J'\y(vv w)

= ﬁ Z h(V,w)((Xi,yi)’ (X]1YJ)),

1<J

where

h’(v,w)((x) y)) (XI’ y/)) = %(k:(x, V) - k(xl7 V))U(Y) W) - l(y/: W))

m (v, w) is a one-sample 2"-order U-statistic, given (v, w).
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