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Overview

m Have: Two collections of samples X, Y from unknown distributions
P and Q.

Positive emotions
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Overview

m Have: Two collections of samples X, Y from unknown distributions
P and Q.

Positive emotions

m Goal: Learn distinguishing features that indicate how P and @
differ.
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Distinguishing Feature(s)

Where is the best location to observe the difference of P(x) and

Q(y)?
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Distinguishing Feature(s)
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Distinguishing Feature(s)
Where is the best location to observe the difference of P(x) and

Qy)?

v 2
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B Why: best location = distinguishing feature.
m Propose: a linear-time algorithm to find such data-driven

feature(s).
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Witness Function (Gretton et al., 2012)
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Witness Function (Gretton et al., 2012)

Observe X = {xy,...,X,} ~ P

Observe Y = {y1,...,¥n} ~ @
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Witness Function (Gretton et al., 2012)

Gaussian kernel on x;

Gaussian kernel on y;
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Witness Function (Gretton et al., 2012)

(ﬂp(V): mean embedding of P

fo(v): mean embedding of Q
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Witness Function (Gretton et al., 2012)

(‘ﬂp(V): mean embedding of P

fo(v): mean embedding of @

witness(v) = ap(v) — fgo(v)
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Witness Function (Gretton et al., 2012)

witness®(v)

o @O0 - - VvV
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Witness Function (Gretton et al., 2012)

= — A%

Best feature =

v* that maximizes witness®(
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Failure Mode of the Witness Function

/\Witness2 (v)

Sample size n = 3
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Failure Mode of the Witness Function

Sample size n = 50
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Failure Mode of the Witness Function

Sample size n = 500
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Failure Mode of the Witness Function

Sample size n = 5000
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Failure Mode of the Witness Function
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Failure Mode of the Witness Function

— A
— Q@)

2

—_— Wltness v

6/13



Failure Mode of the Witness Function

— Px)
— Qy)

—  witness?(v)

m witness®(v) only cares about the “signal”.
m Not the “noise” (variability) at each feature.
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The ME (Mean Embeddings) Statistic (Chwialkowski et al., 2015)

m Variance of v = variance of v from X + variance of v from Y.
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The ME (Mean Embeddings) Statistic (Chwialkowski et al., 2015)

m Variance of v = variance of v from X + variance of v from Y.

m ME Statistic: A, (v) :=n

— A\ (V)
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The ME (Mean Embeddings) Statistic (Chwialkowski et al., 2015)

= Variance of v = variance Qf v 2fr0m X + variance of v from Y.
m ME Statistic: A,(v) := _witness®(v)

variance of v*

— A\ (V)

A
/ \

m Best location is v* that maximizes \,,.
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Properties of the ME Statistic

m Can construct a two-sample test using J features.
Hy:P=Qvs H :P#Q.
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m Can construct a two-sample test using J features.
Hy:P=Quvs. HH:P#Q.
m Choosing the best J features increases a lower bound on the test
power.
Test power = P(reject Hy | H; is true).
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Properties of the ME Statistic

m Can construct a two-sample test using J features.
Hy:P=Quvs. HH:P#Q.
m Choosing the best J features increases a lower bound on the test
power.
Test power = P(reject Hy | H; is true).

®m Runtime: O(n). Fast.
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Distinguishing Positive/Negative Emotions

- B 4

- v @ ﬁ
-
4 @ m \N m 35 females and 35 males
' (Lundqvist et al., 1998).

m 48 x 34 = 1632 dimensions.
Pixel features.
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Distinguishing Positive/Negative Emotions
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Distinguishing Positive/Negative Emotions
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m Test power comparable to the state-of-the-art MMD test.
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Distinguishing Positive/Negative Emotions

71 No optimization
Il Proposed
B MMD (quadratic time)

happy  neutral surprised
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afraid angry disgusted

m Test power comparable to the state-of-the-art MMD test.
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Distinguishing Positive/Negative Emotions

S A D6
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happy  neutral surprised

afraid angry disgusted

Learned feature

m Test power comparable to the state-of-the-art MMD test.
m Informative features: differences at the nose, and smile lines.
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Bayesian Inference Vs. Deep Learning Papers

Papers on Bayesian inference

)

m NIPS papers (1988-2015)
m Sample size n = 216.
m Random 2000 nouns (dimensions). TF-IDF representation.
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Bayesian Inference Vs. Deep Learning Papers

No optimization

o
5

Power —

o
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Bayesian Inference Vs. Deep Learning Papers
State-of-the-art

. Proposed
No optimization (lineaI;- time) MMD
(quadratic time)
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Bayesian Inference Vs. Deep Learning Papers

State-of-the-art
Proposed MMD

(hnear_tlme)(quadratic time)

o\

No optimization

o
U

Power —

o
o

Learned informative feature (a new document):

infer, Bayes, Monte Carlo, adaptor, motif,
haplotype, ECG, covariance, Boltzmann
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Mustration: Two Informative Features

Vo > th(vh Vo)

—160
m 2D problem. j140
{120
1100

P N([0,0], 1) {80

Q: N([1,0],1) 16

140

120

o
m J = 2 features. 192
m Fix v; to A. 1184
m Contour plot of 176
- 168
Vo — )\n({Vl,Vg}). . 160
m {vy, vy} chosen to reveal the {152
difference of P and Q. 1144
{136
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Summary

24

|
|

By

T
TN

Learned feature

Fast method to extract features
for distinguishing two distributions

m Python code available: http://wittawat.com
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http://wittawat.com

Questions?

Thank you
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Full ME Test Statistic

m Let V ={vy,...,v s} be the J test locations.
fp(vi) = Bo(vi)

m Let z, := : € R’
fip(vy) = Bo(vy)
m Let
(Sn)ij = CoVx[k(x, Vi), k(x, v;)] + vy [k(y, vi), k(y, v;)] € RT*.
m Then, the statistic
An = nZI (S + fynl)*l Z,

where 7y, > 0 is a regularization parameter.
m When J =1,
5 n [2p(v) — Bo(v))? _
Yo + var,[k(x, v)] + vary [k(y, V)]

n =

m Computing A,: O(J3 + J?n + Jdn).
m Optimization of V: O(J3 + J2dn). 15/13



Distinguishing NIPS Articles

m Bayesian inference, Deep learning, Learning theory

m Random 2000 nouns (dimensions). TF-IDF representation.

1.0

TO.S I ME-opt
_ 0.6 CZ32 ME-rand
204 B MMD-quad

£0.2

0Igpayes-Bayes Bayes-Deep Bayes-Learn Learn-Deep
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Distinguishing NIPS Articles

m Bayesian inference, Deep learning, Learning theory
m Random 2000 nouns (dimensions). TF-IDF representation.

1.0
TO.S I ME-opt
_ 0.6 CZ4 ME-rand
204 B MMD-quad

£0.2

0é)ayes-Bayes Bayes-Deep Bayes-Learn Learn-Deep

Learned informative features (bags of words):

Bayes-Deep: infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG
Bayes-Learn: infer, Markov, graphic, segment, bandit, boundary, favor
Learn-Deep: deep, forward, delay, subgroup, bandit, receptor, invariance
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Preprocessing of NIPS articles

m Remove stop words, and stem.
m A paper belongs to a group if it has at least one keyword.

1 Bayesian inference (Bayes): graphical model, bayesian,
inference, mcmc, monte carlo, posterior, prior, variational,
markov, latent, probabilistic, exponential family.

2 Deep learning (Deep): deep, drop out, auto-encod,
convolutional, neural net, belief net, boltzmann.

3 Learning theory (Learn): learning theory, consistency,
theoretical guarantee, complexity, pac-bayes, pac-learning,
generalization, uniform converg, bound, deviation, inequality, risk
min, minimax, structural risk, VC, rademacher, asymptotic.

4 Neuroscience (Neuro): motor control, neural, neuron, spiking,
spike, cortex, plasticity, neural decod, neural encod, brain imag,
biolog, perception, cognitive, emotion, synap, neural population,

cortical, firing rate, firing-rate, sensor.
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Lower Bound on Test Power

m Let K be a kernel class such that supyey sup(x y)ex2 [k(%,y)| < B.

m Let V be a collection in which each element is a set of J test
locations.

m Assume & := Supycy pex |27 < o0.

Proposition

The test power Py, (5\n > Ta> of the ME test satisfies

Py, (5\,1 > Ta) > L(A,) where

[ (An—Ta) (n—1)—€3n]? _
L(An) =1 257&()‘”771")2/" —2¢e Ean(an—1)2 2 _ 26*[0%*Ta)/3*0371’7n]2%2l/f4

)

and Cs, &1, ... &4 are positive constants depending on only B, J
and ¢. For large n, L(A,) is increasing in A,.

® )\, = nu' "1y is the population counterpart of An.
B =Eyy[z1] and B = Exy[(z1 — p)(z1 — w ']
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Four Toy Problems

Data P Q

1. Same Gaussian (SG) N (04, I3) N (0g, I3)

2. Gauss. mean difference (GMD) N (0g, I3) N((1,0,...,0)T, I)
3. Gauss. variance difference (GVD) N(04,1Is) N(04,diag(2,1,...,1))
4. Blobs (4 x 4 grid of Gaussian blobs)

p -

10 Blobs Eiata. Sample from P.

m Hj is true in SG.

m H; is true in others.
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Rejection Rate vs. Sample Size

SG. d = 50. o
0.020 .
— e
0.8
_ 0.015 . P
o [ -
= 2 0.6
0) o
- 0.010 Q
"‘%’ E 0.4
0.005 0.2
%9960 2000 3000 4000 5000 %960 2000 3000 4000 5000
TeSt;amp'e size Test sample size
GVD. d = 50.
1.0 Blobs. d = 2.
08 — ME-fu!I
N e-+ ME-grid
o6 g ~—  SCF-full
5] H .
e a =-~ SCF-grid
g 0.4 9 +~— MMD-quad
[ = ;
0.2 o—¢ MMD-lin
' [ -—————e v T2
0,Q55===51 TR
0 % -z : M P 1000 2000 3000 4000 5000
1000 2000 3000 4000 5000 Test sample size
Test sample size
m J = 5. Gaussian kernel.
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m Right level of type-1 error. Optimizing V, 02 helps.



Rejection Rate vs. Data Dimension
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\ \ *-+ ME-grid
0.6f )

\ 2 ~—  SCF-full
0.4k ‘\\ ~-~+ SCF-grid
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m n = 10000. J =5.
m T-test has higher type-1 error as

dimension increases.

m GMD: Optimizing V gives ME-full

a maximum test power.
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Test with smooth characteristic functions (Chwialkowski e

1 2

(w) are characteristic functions of P, Q.

u
=
S
<
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[Mustration: SCEF test

-2 -1 L 1 2

m Checking the difference at finite locations may work.
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[Mustration: SCEF test

-2 -1 L 1 2

m It may also fail if locations are poorly chosen.
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[Mustration: SCEF test

L0d0f
dos|-
~ Joosl
/': — pp(w)
3 0.04 Hq(w)

m Smooth the characteristic functions.

m Theoretically, any locations will reveal the difference.
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SCF test (Chwialkowski et al., 2015)

m Test based on smooth characteristic functions (SCF) ¢p.
m Characteristic function of P is p(w) := Ex.p exp(iw 'x).

m Convolve with an analytic smoothing kernel [(a) = exp (— ”2‘2‘22)

$p(w) = / B(W)I(v — w)dw = / exp(iv x)i(x) dP(x),
R R
where [ = inverse Fourier transform of [.
m Test statistic: d ;(P, Q) = %E]‘-le (pp(v;) — do(vi))?-

72
m dg ; uses

$p(v) = L 2r exp (iv'xi) I(xi).

mz = §tatistic
: An =
1(x:) sin(x] v;) — U(yi) sin(y, v;) nZy (S +n) ' Zn
U(xs) cos(x] v;) — U(y:) cos(y! v;) |
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