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When comparing complex generative models in high dimensions,
the question to ask is not“which model is correct”(neither), or
“which model is better,”but rather“where does each model
do better than the other?”

•Given: Two candidate models p, q, a sample {zi}n
i=1 from an

unknown distribution r.
•Do: Test H0 : p fits sample better vs H1 : q fits sample better.
•Propose: Two new model comparison tests:

1.Rel-UME: Represent p, q by i.i.d. samples {xi}n
i=1, {yi}n

i=1.

2.Rel-FSSD: p, q are unnormalized probability densities.

•Advantages:

1. Nonparametric: mild assumptions on p, q. Domain X ⊆ Rd.

2. Linear-time: O(n) runtime complexity. Fast.

3. Informative: show where q fits better than p (or vice versa)
with a set of points (features).

•Test power matches that of the state-of-the-art quadratic-time
relative MMD test [Bounliphone et al., 2015].

Test Statistics

•Let DV(p, r) := distance between p, r measured at V =
{v1, . . . ,vJ} (features). DV can be UME or FSSD.
•Statistic S := DV(p, r)−DV(q, r) =⇒ H0 : S ≤ 0 vs H1 : S > 0.
•DV(p, r) = average evaluation of the squared witness function

= 1
J

∑J
j=1witness

2
p,r(v j).

UME (Unnormalized Mean Embeddings) [Jitkrittum et al., 2016]

witnessp,r(v) = Ex∼pk(x,v)− Ez∼rk(z,v)
for some kernel k(x,v).
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FSSD (Finite-Set Stein Discrepancy) [Jitkrittum et al., 2017]
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Ex∼pξp(x,v)− Ez∼rξp(z,v)
where ξ p(x,v) := k(x,v)∇x log p(x) +∇xk(x,v)

(Normalizer of p not needed.)

p

r

v

Relative Goodness-of-Fit Testing

Proposition.Empirical statistic S = S(V ) for both Rel-UME
and Rel-FSSD follows a normal distribution as n→∞.

•Estimate S. Reject H0 if S > threshold = (1 − α)-quantile
of the normal. False rejection rate < α (asymptotically).
•Reject H0 =⇒ q is closer to r as measured at V .

Informative Features = V which maximizes

Test Power = P(detect better fit of q | q is better).

Equivalently, find V which maximizes the power criterion:

Power Criterion(V ) :=
S(V )

uncertainty(V )
=

(
signal

noise

)
,

where uncertainty(V ) = variance of S(V ) under H1.
•O(n) complexity to evaluate power criterion. Fast.

Rel-UME and Rel-FSSD Power Criteria

−5 0 5 10
−0.2

0.0

0.2

0.4 p

q

r

witnessp,r

witnessq,r

Power Cri.

Rel-UME Rel-UME

Rel-FSSD
Criterion positive.
q better here.Criterion negative.

p better here.
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•Rel-UME: better model produces mass closer to the test
sample from r.
•Rel-FSSD: better model has shape (given by ∇x log p(x)

and ∇y log q(y)) closer to r.

Informative Features (CIFAR-10)

{xi}n
i=1 = {airplane, cat},

{yi}n
i=1 = {automobile, cat},

{zi}n
i=1 = {automobile, cat}.

We thank all the reviewers for constructive comments. We will revise the paper accordingly. Recall: J = number of1

test locations, P,Q = two candidate models, R = data distribution, n = sample size.2

Rev 1: Summary of Theorems 1, 2. In null hypothesis statistical testing, the test statistic is compared to a threshold3

to decide whether the null hypothesis H0 (i.e., Q is not better than P ) should be rejected. To control false rejection rate4

to be no more than α, it is common to set the threshold to the (1− α)-quantile of the (asymptotic) distribution of the5

statistic when H0 is true, where α is known as the significance level (pre-chosen). Theorem 1, 2 state the asymptotic6

distributions of the two proposed statistics, allowing us to compute the quantiles, and to derive the power criteria. Please7

see lines 132-156. We will add accompanying explanation to Theorems 1, 2, and more structure to Sec 2.8

Rev 1: Rel-UME and Rel-FSSD. Intuitively, Rel-UME determines the better model to be the one that produces9

probability mass (as measured around the test locations) closest to the test sample. Rel-FSSD does not address the10

overall probability mass, but rather the shape of the model density (please see experiment 1 and Fig 1 for further11

explanation). The structural information gained by having access to density functions allows Rel-FSSD to correctly12

determine the better model even when the P and Q are very similar (Fig 4d, perturbation only slightly above 0.3).13

However, when one model is significantly better than the other (Fig 4d, large perturbation), it is possible that directly14

examining the difference in probability masses can better detect the relative goodness of fit. This explains why15

Rel-UME has higher rejection rate (power) than Rel-FSSD J1 in Fig 4d, when perturbation is large. We note that16

in Fig 4c, the runtimes of the proposed tests increase so slowly (linear wrt n) that the curves appear flat. There is no17

saturation. We will improve the figures.18

Revs 1, 3: Advantages/disadvantages. As noted by rev 2, a key advantage of our new linear-time tests is its ability to19

produce informative features (test locations) which indicate where (in a local region) model Q fits better than model20

P . Toy problem 2 (Blobs) gives a scenario where the ability to detect local differences is crucial (see line 255) in21

determining the better model. Toy problem 3 (RBM) is where the differences are non-trivial and in high dimension. We22

show (in Fig 4d) that even in this case, relying on local differences still yields high test power. A plausible scenario23

where the new approach might require large sample sizes is when P and Q differ in ways that their differences cannot be24

seen locally i.e., spatially diffuse differences (e.g., two Gaussians with slightly different variance). We will investigate25

this scenario and include the results in the appendix of the camera-ready version.26

Revs 1, 2: GAN comparison. We agree with revs 1, 2 that Table 1 does not suggest that the proposed Rel-UME is27

better than Rel-MMD, and KID in terms of testing. However, it assures that the new approach performs at least equally28

well. We would like to emphasize that nonparametric linear-time testing is only one of the two key advantages of this29

work. The more important advantage is the discovery of informative features (hence the title of this work), which30

cannot be provided by Rel-MMD, KID, and FID. We note that there is no easy way to control false rejection rate of31

FID, hence the high rejection rate (even though H0 is true) as shown in the first row of Table 1, not to mention its high32

computational cost. We emphasize that the new tests have O(n) runtime.33
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Rev 2: Fig 2 from experiment 3. We plan to theoretically compare34

the test powers of the proposed tests and Rel-MMD in the future35

work with asymptotic relative efficiency. Sub-figures in Fig 2 and36

their captions are correct. There are typos in lines 312-314. Lines37

312-314 should be: Figure 2c shows the top 15 test locations as sorted38

descendingly by the criterion. Fig 2b shows test locations (i.e., cats)39

which have power criterion values close to 0, meaning that these images can be generated equally well by both models40

P,Q. We illustrate with an example analogous to experiment 3 (lines 301-316) but reduced to one dimension (figure on41

the right). The green curve represents the power criterion as a function of the test location v.42

The appearance of some airplane images in Fig 2b is indeed unexpected, since Fig 2b should contain the least informative43

features in comparing P and Q to R (i.e., cats). This is an artifact of using an off-the-shelf feature extractor (pool3 layer44

of the Inception-v3 net) that is not trained specifically for this task, combined with the fact that uninformative features45

with low distinguishing power are intrinsically noisier and harder to define. Our intention was to use the same image46

feature extractor for both experiments 3 and 4. We avoid training the extractor to keep the comparison fair in experiment47

4, since Rel-MMD, KID, and FID have no criterion to tune the feature extractor. Training a bespoke extractor (by48

maximizing the power criterion) will likely result in Fig 2b containing only cat images, and Fig 2c containing a mix of49

automobile and airplane images. We will study this setting in the future work.50

Rev 3: Fig 4 and choosing J . We would like to point out that Fig 4 does not suggest that increasing J increases false51

rejection rate. It does suggest that increasing J can increase the test power, as noted by the reviewer. In general J is52

related to the number of informative regions which provide evidence for the better fit of Q. If there are L such regions,53

then it is sufficient to set J ≤ L, since we only require “just enough” evidence to reject H0, not full evidence. In54

practice, we observe that J = 20 gives a good starting point.55
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•Evaluate Power Criterion({v}) where v = image in each category.
•Power Criterion({v}) > 0 everywhere =⇒ q is better.
•q is better at generating automobile images.
•Criterion({v}) ≈ 0 =⇒ p, q equally good at generating cat images.

Where Does Each GAN Do Better?

q = LSGAN

p = GAN
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•q = LSGAN [Mao et al., 2017]
• p = GAN [Goodfellow et al., 2014]
•Trained for 40 epochs. Evaluate power

criterion with n = 2000.

•Set V = 40 (real) images of digit i = 0, . . . , 9.
•q is better at “1” and “5”. p is slightly better at “3”. Interpretable.

Contact: wittawat@tuebingen.mpg.de Code: github.com/wittawatj/kernel-mod


