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Summary

e Given: {x;}" , ~ g (unknown), and a density p.
e Goal: Test Hy: p = g vs H : p # q quickly.
e New multivariate goodness-of-fit test (FSSD):

1. Nonparametric: arbitrary, unnormalized p. x € R?.

2. Linear-time: O(n) runtime complexity. Fast.

3. Interpretable: tell where p does not fit the data.

Previous: Kernel Stein Discrepancy (KSD)

elet &(x,v) = =V lk(x,v)p(x)] € RY.

p(x)

Stein witness function: g(v) = Ex./[S(x, V)| where
g = (g1,...,84) and each g; € F, an RKHS associated

with kernel k.

Known: Under some conditions, ||g||« =0 < p=g4.
[Chwialkowski et al., 2016, Liu et al., 2016}

Statistic: KSD* =
n(n2—1) Zi<j hP(Xi7 Xj):

double sums

gHQFd = ]EXNQ g p(X,y) &

NEIrE

hy(x,y) = [Vxlog p(x)] k(x,y) [Vylog p(y)] + V< Vyk(x,y)
+ [Vylog p(y)] Vxk(x,y) + [Vxlog p(x)] Vyk(x,y).

Characteristics of KSD:
v Nonparametric. Applicable to a wide range of p.
v Do not need the normalizer of p.

X Runtime: O(n*). Computationally expensive. &
Linear-Time KSD (LKS) Test: [Liuet al., 2016]

g% & %Z?ﬁ h,(Xoi—1,X2i)-

v Runtime: O(n). X High variance. Low test power. &

The Finite Set Stein Discrepancy (FSSD)

Idea: Evaluate witness g at J locations {v1,...,v;}. Fast.
J
1
FSSD? = — > llg(v))ll3
j=1

Proposition (FSSD is a discrepancy measure).
Main conditions:

1. (Nice kernel) Kernel k is Cy-universal, and real analytic

( Taylor series at any point converges) e.g., Gaussian kernel.

2. (Vanishing boundary) limx| . p(X)g(x) = 0.
3. (Avoid “blind spots”) Locations {vi, ..

from a distribution 1 which has a density.
T hen, foraﬂ/f > 1, n-a.s. FSSD? = () «— p=q.

Characteristics of FSSD:
v Nonparametric. v Do not need the normalizer of p.

v Runtime: O(n). v Higher test power than LKS. L)

Model Criticism with FSSD

Proposal: Optimize locations {vi,...,v,;} and kernel
bandwidth by arg max score = FSSD“ /oy, (runtime: O(n)).

Proposition: This procedure maximizes the true positive
rate = P(detect difference | p # q).

score: 0.034 score: (.44

WJ, WX, and AG thank the Gatsby Charitable Foundation E 'E
for the financial support. ZSz was financially supported '-I:-".q:. "y
by the Data Science Initiative. KF has been supported by | ":HI':"'—'-
KAKENHI Innovative Areas 25120012. 1% 0
Contact: wittawat@gatsby.ucl.ac.uk E s
Code: github.com/wittawatj/kernel-gof

2CMAP, Ecole Polytechnique

.,Vy} are drawn

SThe Institute of Statistical Mathematics

Interpretable Features for Model Criticism

=\ % = v* = where model

&/ does not fit well.

9
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events in Chicago Optimized v*
in 2016 i hlgh|y
= interpretable.
Model p = ' ' Maximization objective

10-component
Gaussian mixture

FSSDQ/GHl.

Bahadur Slope and Bahadur Efficiency

e Bahadur slope = rate of p-value — 0 of statistic 7,, under H;. High = good.

AT : (1)
e Bahadur efficiency = ratio 3252(2) of slopes of two tests. > 1 means test!!) better.

e Results: Slopes of FSSD and LKS tests when p = N(0,1) and ¢ = N (,, 1).

o - | Proposition. Let of,k” be kernel bandwidths of
S o | FSSD and LKS. Fix o = 1. Then, Vp, # 0,
;0'5 " Jv € R, Vk* > 0, the Bahadur efficiency
of

0.00 . . SlOﬁ_De(FSSD)(“qv v, 0;) < 9 FSSD is statistically

0 o0 Ho Sj_ope(LKS)( iy, K2) more efficient than LKS.

Experiment: Restricted Boltzmann Machine

e 40 binary hidden units. d = 50 visible units. Significance level o¢ = 0.05.
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e FSSD-opt, (FSSD-rand) = Proposed tests. J = 5 optimized, (random) locations.

e MMD-opt [Gretton et al., 2012] = State-of-the-art two-sample test (quadratic-time).
e ME-opt [Jitkrittum et al., 2016] = Linear-time two-sample test with optimized locations.

e Key: FSSD (O(n)), KSD (O(n”)) have comparable power. FSSD is much faster.



