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1Gatsby Unit, University College London 2CMAP, École Polytechnique 3The Institute of Statistical Mathematics

A Linear-Time Kernel Goodness-of-Fit Test
Wittawat Jitkrittum1 Wenkai Xu1 Zoltán Szabó2 Kenji Fukumizu3 Arthur Gretton1
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Summary

•Given: {xi}n
i=1 ∼ q (unknown), and a density p.

•Goal: Test H0 : p = q vs H1 : p 6= q quickly.
•New multivariate goodness-of-fit test (FSSD):

1. Nonparametric: arbitrary, unnormalized p. x ∈ Rd.

2. Linear-time: O(n) runtime complexity. Fast.

3. Interpretable: tell where p does not fit the data.

Previous: Kernel Stein Discrepancy (KSD)

•Let ξ (x,v) := 1
p(x)∇x[k(x,v)p(x)] ∈ Rd.

Stein witness function: g(v) = Ex∼q[ξ (x,v)] where
g = (g1, . . . , gd) and each gi ∈ F , an RKHS associated
with kernel k.
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Known: Under some conditions, ‖g‖Fd = 0 ⇐⇒ p = q.
[Chwialkowski et al., 2016, Liu et al., 2016]

Statistic: KSD2 = ‖g‖2Fd =
double sums︷ ︸︸ ︷
Ex∼qEy∼q hp(x,y) ≈

2
n(n−1)

∑
i< j hp(xi,x j). where

hp(x,y) := [∇x log p(x)] k(x,y) [∇y log p(y)] +∇x∇yk(x,y)
+ [∇y log p(y)]∇xk(x,y) + [∇x log p(x)]∇yk(x,y).

Characteristics of KSD:
3 Nonparametric. Applicable to a wide range of p.
3 Do not need the normalizer of p.

7 Runtime: O(n2). Computationally expensive.

Linear-Time KSD (LKS) Test: [Liu et al., 2016]

‖g‖2Fd ≈ 2
n

∑n/2
i=1 hp(x2i−1,x2i).

3 Runtime: O(n). 7 High variance. Low test power.

The Finite Set Stein Discrepancy (FSSD)

Idea: Evaluate witness g at J locations {v1, . . . ,vJ}. Fast.

FSSD2 =
1

dJ

J∑
j=1

‖g(v j)‖22.

Proposition (FSSD is a discrepancy measure).
Main conditions:

1. (Nice kernel) Kernel k is C0-universal, and real analytic
(Taylor series at any point converges) e.g., Gaussian kernel.

2. (Vanishing boundary) lim‖x‖→∞ p(x)g(x) = 0.

3. (Avoid “blind spots”) Locations {v1, . . . ,vJ} are drawn
from a distribution η which has a density.

Then, for any J ≥ 1, η-a.s. FSSD2 = 0 ⇐⇒ p = q.

Characteristics of FSSD:
3 Nonparametric. 3 Do not need the normalizer of p.

3 Runtime: O(n). 3 Higher test power than LKS.

Model Criticism with FSSD

Proposal: Optimize locations {v1, . . . ,vJ} and kernel
bandwidth by argmax score = FSSD2/σH1

(runtime: O(n)).

Proposition: This procedure maximizes the true positive
rate = P(detect difference | p 6= q).

score: 0.034 score: 0.44

Interpretable Features for Model Criticism

12K robbery
events in Chicago
in 2016

Model p =
10-component

Gaussian mixture

F = v∗ = where model
does not fit well.

Maximization objective
FSSD2/σH1

.

Optimized v∗

is highly
interpretable.

Bahadur Slope and Bahadur Efficiency

•Bahadur slope u rate of p-value → 0 of statistic Tn under H1. High = good.

•Bahadur efficiency = ratio slope(1)

slope(2)
of slopes of two tests. > 1 means test(1) better.

•Results: Slopes of FSSD and LKS tests when p = N (0, 1) and q = N (µq, 1).
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Proposition. Let σ 2
k , κ2 be kernel bandwidths of

FSSD and LKS. Fix σ 2
k = 1. Then, ∀µq 6= 0,

∃v ∈ R, ∀κ2 > 0, the Bahadur efficiency

slope(FSSD)(µq,v,σ 2
k )

slope(LKS)(µq, κ2)
> 2. FSSD is statistically

more efficient than LKS.

Experiment: Restricted Boltzmann Machine

•40 binary hidden units. d = 50 visible units. Significance level α = 0.05.
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•FSSD-opt, (FSSD-rand) = Proposed tests. J = 5 optimized, (random) locations.
•MMD-opt [Gretton et al., 2012] = State-of-the-art two-sample test (quadratic-time).
•ME-opt [Jitkrittum et al., 2016] = Linear-time two-sample test with optimized locations.

•Key: FSSD (O(n)), KSD (O(n2)) have comparable power. FSSD is much faster.
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