A Linear-Time Kernel Goodness-of-Fit Test

Wenkai Xu^1 Zoltán Szabó² Kenji Fukumizu³ Wittawat Jitkrittum¹ Arthur Gretton¹

¹Gatsby Unit, University College London

²CMAP, École Polytechnique

³The Institute of Statistical Mathematics

Summary

- Given: $\{\mathbf{x}_i\}_{i=1}^n \sim q$ (unknown), and a density p.
- Goal: Test $H_0: p = q$ vs $H_1: p \neq q$ quickly.
- New multivariate goodness-of-fit test (FSSD):
- 1. Nonparametric: arbitrary, unnormalized p. $\mathbf{x} \in \mathbb{R}^d$.
- 2. Linear-time: O(n) runtime complexity. Fast.
- 3. Interpretable: tell where p does not fit the data.

Previous: Kernel Stein Discrepancy (KSD)

• Let $\xi(\mathbf{x}, \mathbf{v}) := \frac{1}{p(\mathbf{x})} \nabla_{\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})] \in \mathbb{R}^d$.

Stein witness function: $\mathbf{g}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q}[\xi(\mathbf{x}, \mathbf{v})]$ where $\mathbf{g}=(g_1,\ldots,g_d)$ and each $g_i\in\mathcal{F}$, an RKHS associated with kernel k.

Known: Under some conditions, $\|\mathbf{g}\|_{\mathcal{F}^d} = 0 \iff p = q$. [Chwialkowski et al., 2016, Liu et al., 2016]

Statistic: $\mathrm{KSD}^2 = \|\mathbf{g}\|_{\mathcal{F}^d}^2 = \mathbb{E}_{\mathbf{x} \sim q} \mathbb{E}_{\mathbf{y} \sim q} h_p(\mathbf{x}, \mathbf{y}) \approx$ $\frac{2}{n(n-1)}\sum_{i< j}h_p(\mathbf{x}_i,\mathbf{x}_j)$. where

 $h_{p}(\mathbf{x}, \mathbf{y}) := \left[\nabla_{\mathbf{x}} \log p(\mathbf{x})\right] k(\mathbf{x}, \mathbf{y}) \left[\nabla_{\mathbf{y}} \log p(\mathbf{y})\right] + \nabla_{\mathbf{x}} \nabla_{\mathbf{y}} k(\mathbf{x}, \mathbf{y})$ $+ \left[\nabla_{\mathbf{y}} \log \boldsymbol{p}(\mathbf{y})\right] \nabla_{\mathbf{x}} k(\mathbf{x}, \mathbf{y}) + \left[\nabla_{\mathbf{x}} \log \boldsymbol{p}(\mathbf{x})\right] \nabla_{\mathbf{y}} k(\mathbf{x}, \mathbf{y}).$

Characteristics of KSD:

- ✓ Nonparametric. Applicable to a wide range of p.
- \checkmark Do not need the normalizer of p.
- X Runtime: $\mathcal{O}(n^2)$. Computationally expensive.

Linear-Time KSD (LKS) Test: [Liu et al., 2016]

$$\|\mathbf{g}\|_{\mathcal{F}^d}^2 \approx \frac{2}{n} \sum_{i=1}^{n/2} h_{p}(\mathbf{x}_{2i-1}, \mathbf{x}_{2i}).$$

✓ Runtime: $\mathcal{O}(n)$. × High variance. Low test power.

The Finite Set Stein Discrepancy (FSSD)

Idea: Evaluate witness g at J locations $\{v_1, \ldots, v_J\}$. Fast.

FSSD² =
$$\frac{1}{dJ} \sum_{j=1}^{J} ||\mathbf{g}(\mathbf{v}_j)||_2^2$$
.

Main conditions:

- 1. (Nice kernel) Kernel k is C_0 -universal, and real analytic (Taylor series at any point converges) e.g., Gaussian kernel.
- 2. (Vanishing boundary) $\lim_{\|\mathbf{x}\|\to\infty} p(\mathbf{x})\mathbf{g}(\mathbf{x}) = \mathbf{0}$.
- 3. (Avoid "blind spots") Locations $\{\mathbf{v}_1,\ldots,\mathbf{v}_J\}$ are drawn from a distribution η which has a density.

Then, for any $J \ge 1$, η -a.s. $FSSD^2 = 0 \iff p = q$.

Characteristics of FSSD:

- ✓ Nonparametric. ✓ Do not need the normalizer of p.
- ✓ Runtime: $\mathcal{O}(n)$. ✓ Higher test power than LKS.

Model Criticism with FSSD

Proposal: Optimize locations $\{\mathbf{v}_1,\ldots,\mathbf{v}_J\}$ and kernel bandwidth by $\arg\max$ score = $FSSD^2/\sigma_{H_1}$ (runtime: $\mathcal{O}(n)$).

Proposition: This procedure maximizes the true positive rate = $\mathbb{P}(\text{detect difference} \mid p \neq q)$.

score: 0.034

score: 0.44

WJ, WX, and AG thank the Gatsby Charitable Foundation for the financial support. ZSz was financially supported by the Data Science Initiative. KF has been supported by KAKENHI Innovative Areas 25120012.

Contact: wittawat@gatsby.ucl.ac.uk Code: github.com/wittawatj/kernel-gof

Interpretable Features for Model Criticism

Bahadur Slope and Bahadur Efficiency

- Bahadur slope \cong rate of p-value $\to 0$ of statistic T_n under H_1 . High = good.
- Bahadur efficiency = ratio $\frac{\text{slope}^{(1)}}{\text{slope}^{(2)}}$ of slopes of two tests. > 1 means $\text{test}^{(1)}$ better.
- Results: Slopes of FSSD and LKS tests when $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Proposition. Let σ_k^2 , κ^2 be kernel bandwidths of FSSD and LKS. Fix $\sigma_k^2 = 1$. Then, $\forall \mu_q \neq 0$, $\exists \mathbf{v} \in \mathbb{R}, \ \forall \kappa^2 > 0, \ the \ Bahadur \ efficiency$

 $\frac{\mathrm{slope^{(FSSD)}}(\mu_q, \mathbf{v}, \sigma_k^2)}{\mathrm{slope^{(LKS)}}(\mu_q, \kappa^2)} > 2.$ FSSD is statistically more efficient than L

more efficient than LKS.

Experiment: Restricted Boltzmann Machine

• 40 binary hidden units. d = 50 visible units. Significance level $\alpha = 0.05$.

- FSSD-opt, (FSSD-rand) = Proposed tests. J = 5 optimized, (random) locations.
- MMD-opt [Gretton et al., 2012] = State-of-the-art two-sample test (quadratic-time).
- ME-opt [Jitkrittum et al., 2016] Linear-time two-sample test with optimized locations.
- Key: FSSD $(\mathcal{O}(n))$, KSD $(\mathcal{O}(n^2))$ have comparable power. FSSD is much faster.