
Kernel Mean Matching for Content ADdressability of GANs

Wittawat Jitkrittum∗,1 Patsorn Sangkloy∗,2 Muhammad Waleed Gondal1 Amit Raj2 James Hays2 Bernhard Schölkopf1

1Max Planck Institute for Intelligent Systems 2Georgia Institute of Technology

Kernel Mean Matching for Content ADdressability of GANs

Wittawat Jitkrittum∗,1 Patsorn Sangkloy∗,2 Muhammad Waleed Gondal1 Amit Raj2 James Hays2 Bernhard Schölkopf1

1Max Planck Institute for Intelligent Systems 2Georgia Institute of Technology

Summary

•Given: Pre-trained GAN g, input images Xm := {xi}m
i=1

•Goal: Generate images Yn := {y j}n
j=1 similar to Xm.

•Propose CADGAN: a kernel mean matching proce-
dure that adds“content-addressability”to g at run-time.
•Advantages:

1. No need to retrain g.

2. Flexible choice of the similarity criterion.

3. Fine-grained control with input weights {wi}m
i=1.

Proposal: CADGAN

CADGAN: Generate images from g so as to match
the mean feature of the input images represented
in a reproducing kernel Hilbert space (RKHS).

Input images Xm

Output images Yn

– Output range of g

Matched mean

How: Minimize the distance (MMD) between the input
and output means in RKHS H (kernel mean matching):

argmin
{y j}n

j=1 in range(g)

∥∥∥∥
m∑

i=1

wiφ (xi)−
1

n

n∑

j=1

φ (y j)

∥∥∥∥
2

H
. (1)

•{y j}n
j=1 are constrained to be in the output range of g.

•φ : an implicit nonlinear function (induced by a kernel).
•wi: weight of the input xi.

∑m
i=1 wi = 1 and wi ∈ [0, 1].

Kernel Mean Matching with a Generator

•Let K(a,b) = 〈φ (a), φ (b)〉H be a kernel (≈ similarity) between
two images a,b.
•Parametrize y j = g(z j) where z j is a latent vector.

Then, (1) can be rewritten as

m∑

i, j=1

wiw jK(xi,x j) +
1

n2

n∑

i, j=1

K(g(zi), g(z j))−
2

n

m∑

i=1

wi

n∑

j=1

K(xi,g(z j)). (2)

Proposed CADGAN: argmin{z j}n
j=1

(2)

•Optimize the latent vectors {z j}n
j=1 with Adam.

•Output images: {g(z) j}n
j=1.

•Use kernel K(a,b) := k(E(a),E(b)) where E is an image feature
extractor of choice e.g., VGG Face, Places365-ResNet.
•Use IMQ kernel k(s, t) = (c2 + ‖s− t‖22)−1/2 for some c > 0.

Experiment: LSUN-{Bridge, Bedroom, Tower}
Kernel Mean Matching for Content Addressability of GANs

5.4. Content-Based Generation of Complex Scenes

In the final experiment, we demonstrate our content-based
generation method in its full generality (i.e., m > 1 and
n > 1) on images of complex scenes. We consider three
categories of the LSUN dataset (Yu et al., 2015): bed-
room, bridge, tower, and use pretrained GAN models from
Mescheder et al. (2018) which were trained separately on
training samples from each category. The models are based
on DCGAN architecture with additional residual connec-
tions (He et al., 2016). Unconditional samples from these
models can be found in Figures 19, 20 and 21, respectively
in the appendix. For content-based generation, we use the
IMQ kernel with parameter c = 100 and set the extractor
E to be the output of the layer before the last fully con-
nected layer of a pretrained Places365-ResNet classifica-
tion model (Zhou et al., 2017).4 This network was trained
to classify 365 unique scenes (training set comprising ten
million images), and is expected to be able to capture high-
level visual features of complex scenes.

Our results in Figure 5 show that in each test case, the
three generated images are highly consistent with the two
input images (from the LSUN’s test set). For instance, in
bridge#1 (test case #1 of the LSUN-bridge category in Fig-
ure 5), not only is the tone black-and-white but the bridge
structure is also well captured. In other cases such as
tower#1, our procedure appears to generate similar build-
ings as present in the input images, but with a different
viewing angle. This feat demonstrates that the proposed
procedure can generate images that are semantically simi-
lar to the input. Our procedure does not degrade the quality
of the generated images (compare the image quality to that
of unconditional samples in Figures 19, 20 and 21).

6. Discussion and Outlook
We have presented a procedure for constructing a content-
based generator by leveraging existing pretrained uncon-
ditional generative models. To our knowledge, this is the
first work that addresses this setting, at test time, and with-
out retraining the underlying models. There are opportuni-
ties for improvement. One topic of current research is on
theoretically grounded, quantitative measure of the coher-
ence between input and output sets of images, which are
relatively small, compared to model evaluation of GANs
in general (Heusel et al., 2017; Bińkowski et al., 2018;
Jitkrittum et al., 2018). Preliminary results on quantitative
evaluation of our approach are presented in Section A (ap-
pendix). More experimental results can be found in the
appendix.

4Pretrained Places365 networks are available at: https://
github.com/CSAILVision/places365.

Input Output

#4 →

#3 →

#2 →

#1 →

(a) LSUN-bridge

Input Output

#4 →

#3 →

#2 →

#1 →

(b) LSUN-bedroom

Input Output

#4 →

#3 →

#2 →

#1 →

(c) LSUN-tower

Figure 5: Generated output images from our approach. In
each of the three LSUN categories, there are four test cases
(denoted by #1, . . ., #4), each containing two input images
from the LSUN test set.

Kernel Mean Matching for Content Addressability of GANs

5.4. Content-Based Generation of Complex Scenes

In the final experiment, we demonstrate our content-based
generation method in its full generality (i.e., m > 1 and
n > 1) on images of complex scenes. We consider three
categories of the LSUN dataset (Yu et al., 2015): bed-
room, bridge, tower, and use pretrained GAN models from
Mescheder et al. (2018) which were trained separately on
training samples from each category. The models are based
on DCGAN architecture with additional residual connec-
tions (He et al., 2016). Unconditional samples from these
models can be found in Figures 19, 20 and 21, respectively
in the appendix. For content-based generation, we use the
IMQ kernel with parameter c = 100 and set the extractor
E to be the output of the layer before the last fully con-
nected layer of a pretrained Places365-ResNet classifica-
tion model (Zhou et al., 2017).4 This network was trained
to classify 365 unique scenes (training set comprising ten
million images), and is expected to be able to capture high-
level visual features of complex scenes.

Our results in Figure 5 show that in each test case, the
three generated images are highly consistent with the two
input images (from the LSUN’s test set). For instance, in
bridge#1 (test case #1 of the LSUN-bridge category in Fig-
ure 5), not only is the tone black-and-white but the bridge
structure is also well captured. In other cases such as
tower#1, our procedure appears to generate similar build-
ings as present in the input images, but with a different
viewing angle. This feat demonstrates that the proposed
procedure can generate images that are semantically simi-
lar to the input. Our procedure does not degrade the quality
of the generated images (compare the image quality to that
of unconditional samples in Figures 19, 20 and 21).

6. Discussion and Outlook
We have presented a procedure for constructing a content-
based generator by leveraging existing pretrained uncon-
ditional generative models. To our knowledge, this is the
first work that addresses this setting, at test time, and with-
out retraining the underlying models. There are opportuni-
ties for improvement. One topic of current research is on
theoretically grounded, quantitative measure of the coher-
ence between input and output sets of images, which are
relatively small, compared to model evaluation of GANs
in general (Heusel et al., 2017; Bińkowski et al., 2018;
Jitkrittum et al., 2018). Preliminary results on quantitative
evaluation of our approach are presented in Section A (ap-
pendix). More experimental results can be found in the
appendix.

4Pretrained Places365 networks are available at: https://
github.com/CSAILVision/places365.

Input Output

#4 →

#3 →

#2 →

#1 →

(a) LSUN-bridge

Input Output

#4 →

#3 →

#2 →

#1 →

(b) LSUN-bedroom

Input Output

#4 →

#3 →

#2 →

#1 →

(c) LSUN-tower

Figure 5: Generated output images from our approach. In
each of the three LSUN categories, there are four test cases
(denoted by #1, . . ., #4), each containing two input images
from the LSUN test set.

Kernel Mean Matching for Content Addressability of GANs

5.4. Content-Based Generation of Complex Scenes

In the final experiment, we demonstrate our content-based
generation method in its full generality (i.e., m > 1 and
n > 1) on images of complex scenes. We consider three
categories of the LSUN dataset (Yu et al., 2015): bed-
room, bridge, tower, and use pretrained GAN models from
Mescheder et al. (2018) which were trained separately on
training samples from each category. The models are based
on DCGAN architecture with additional residual connec-
tions (He et al., 2016). Unconditional samples from these
models can be found in Figures 19, 20 and 21, respectively
in the appendix. For content-based generation, we use the
IMQ kernel with parameter c = 100 and set the extractor
E to be the output of the layer before the last fully con-
nected layer of a pretrained Places365-ResNet classifica-
tion model (Zhou et al., 2017).4 This network was trained
to classify 365 unique scenes (training set comprising ten
million images), and is expected to be able to capture high-
level visual features of complex scenes.

Our results in Figure 5 show that in each test case, the
three generated images are highly consistent with the two
input images (from the LSUN’s test set). For instance, in
bridge#1 (test case #1 of the LSUN-bridge category in Fig-
ure 5), not only is the tone black-and-white but the bridge
structure is also well captured. In other cases such as
tower#1, our procedure appears to generate similar build-
ings as present in the input images, but with a different
viewing angle. This feat demonstrates that the proposed
procedure can generate images that are semantically simi-
lar to the input. Our procedure does not degrade the quality
of the generated images (compare the image quality to that
of unconditional samples in Figures 19, 20 and 21).

6. Discussion and Outlook
We have presented a procedure for constructing a content-
based generator by leveraging existing pretrained uncon-
ditional generative models. To our knowledge, this is the
first work that addresses this setting, at test time, and with-
out retraining the underlying models. There are opportuni-
ties for improvement. One topic of current research is on
theoretically grounded, quantitative measure of the coher-
ence between input and output sets of images, which are
relatively small, compared to model evaluation of GANs
in general (Heusel et al., 2017; Bińkowski et al., 2018;
Jitkrittum et al., 2018). Preliminary results on quantitative
evaluation of our approach are presented in Section A (ap-
pendix). More experimental results can be found in the
appendix.

4Pretrained Places365 networks are available at: https://
github.com/CSAILVision/places365.

Input Output

#4 →

#3 →

#2 →

#1 →

(a) LSUN-bridge

Input Output

#4 →

#3 →

#2 →

#1 →

(b) LSUN-bedroom

Input Output

#4 →

#3 →

#2 →

#1 →

(c) LSUN-tower

Figure 5: Generated output images from our approach. In
each of the three LSUN categories, there are four test cases
(denoted by #1, . . ., #4), each containing two input images
from the LSUN test set.

•3 GANs from Mescheder et al.,
2018 trained on LSUN-bridge,
LSUN-bedroom, LSUN-tower.
•Extractor E = Places365-ResNet.

Experiment: CelebA-HQ

•g = GAN from Mescheder et al., 2018 trained on CelebA-HQ.
•For each (w1,w2,w3), generate n = 1 image from m = 3 input images.

Kernel Mean Matching for Content Addressability of GANs

(a) Unconditional samples from the GAN model

x1 x2

x3

x1 x2

x3

(0, 0, 88)

(w1, w2, w3)
= (48 , 0,

4
8)

(28 ,
6
8 , 0)

(18 ,
4
8 ,

3
8)

(b) Generated images given three input images and their weights

Figure 4: Compression (Section 5.3): generate one image
so as to match the (weighted) mean feature of m = 3 input
images. (a): Unconditional samples from the GAN model
studied in Mescheder et al. (2018) (trained on the CelebA-
HQ dataset). (b): Generated images from the proposed
procedure given three input images x1,x2,x3 (bordered
images in the corners), and input weights w1, w2, w3. For
a higher resolution image, see Figure 10 in the appendix.

Unconditional samples from the model, and generated re-
sults are shown in Figure 3. In both test cases (Figures 3b
and 3c), the output images are consistent with the input in
the sense as specified by the extractor being used. Specif-
ically, when the Color extractor is used, the generated im-
ages have the same color as the input image, but with a
variety of digit types. When the Digit extractor is used,
the output images contain digits of the same digit type, but
with diverse colors. We emphasize that the extractor can be
changed at run time, without retraining the marginal gener-
ative model.

5.3. Compression by Matching the Mean

A noteworthy special case of our formulation is when
m > n (more input images than output images). In
this case, the output mean embedding µ̂Q has fewer de-
grees of freedom than the input mean embedding µ̂P,w
in the sense that there are fewer summands. As a re-
sult, for the two mean embeddings to match, each out-

put image is forced to combine features from multiple in-
put images. For this reason, we refer to this task as the
compression task. An interesting instance of this task is
when m = 3 and n = 1. With m = 3 input images,
the (weighted) input mean embedding can be written as
µ̂P,w =

∑2
i=1 wik(E(xi), ·)+(1−w1−w2)k(E(x3), ·),

where w1, w2 ∈ [0, 1] specifies the relative importance of
the first two input images x1 and x2, respectively. The
weight for the third input x3 is given by w3 = 1−w1−w2.
These weights give an extra freedom to control how much
each of the input images contributes to the mean feature
that should be matched by the output mean embedding.

To illustrate the compression, we use a GAN model from
Mescheder et al. (2018) pretrained on the CelebA-HQ
problem (Karras et al., 2017). Sample images from the
model are shown in Figure 4a (more in Figure 22 in the ap-
pendix). We use the same IMQ kernel as used previously,
and set the extractor E to be the output of layer Relu3-3 of
the VGG-Face network (Parkhi et al., 2015).3 The images
generated from our procedure are shown in Figure 4b for
various settings of the input weights (w1, w2, w3) =: w.
Each of the output images is positioned such that the close-
ness to a corner (an input image) indicates the importance
(weight) of the corresponding input image. See Figure 9
for a precise weight vector specification at each position.
We observe that when one of the weights is exactly one
(i.e., equivalent to the problem of having only m = 1 in-
put image), the output image almost reproduces the input
image (see the output images in the corners). When only
one of the weights is 0 (i.e., equivalent to having m = 2
input images), the output image interpolates between the
two input images (see the output images along the edges of
the triangle). Beyond these two special cases, varying the
weights so that w1 > 0, w2 > 0 and w3 > 0 appears to
smoothly blend key visual features of the three input faces,
giving output images which are consistent with all the in-
put images and weights (see the images in the interior of
the triangle). More compression results can be found in
Section E (appendix).

We emphasize that changing the weight between two in-
put images is not equivalent to a commonly used approach
of linearly interpolating between the latent vector that gen-
erates x1 and the latent vector that generates x2. In our
procedure, for each w, the obtained latent vector zw satis-
fies zw = argminz ‖µ̂P,w − k(E(g(z), ·))‖2H and is such
that g(zw) is an image whose feature vector is close to the
mean feature defined by µ̂P,w. Simply interpolating be-
tween two latent vectors may not give output images with
this property.

3Pretrained VGG-Face models are available at http://
www.robots.ox.ac.uk/~vgg/software/vgg_face/.

Output images
from CADGAN

Unconditional
samples from g

Experiment: Flexible Choice of Similarity Criterion

Unconditional samples
from g (DCGAN)

Input
Color

Output

Digit

Color &
Digit

Input
Color

Output

Digit

Color &
Digit

Set E =
color extractor

Set E =
digit classifier

Aspects of the input image(s) that will be captured can be controlled by changing
the extractor E.

∗ Wittawat Jitkrittum and Patsorn Sangkloy contributed equally.
Contact: wittawat@tuebingen.mpg.de, patsorn.sangkloy@gmail.com

Code: https://github.com/wittawatj/cadgan

