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We propose a novel procedure which adds ‘“content-
addressability” to any given unconditional implicit model
e.g., a generative adversarial network (GAN). The proce-
dure allows users to control the generative process by spec-
ifying a set (arbitrary size) of desired examples based on
which similar samples are generated from the model. The
proposed approach, based on kernel mean matching, is ap-
plicable to any generative models which transform latent
vectors to samples, and does not require retraining of the
model. Experiments on various high-dimensional image
generation problems (CelebA-HQ, LSUN bedroom, bridge,
tower) show that our approach is able to generate images
which are consistent with the input set, while retaining
the image quality of the original model. To our knowl-
edge, this is the first work that attempts to construct, at test
time, a content-addressable generative model from a trained
marginal model.

1. Background

We first briefly review maximum mean discrepancy [2],
and the kernel mean matching problem [1l]. Our proposed
method (Section[2)) will be based on the kernel mean match-
ing.

Maximum Mean Discrepancy (MMD) Given two dis-
tributions P, ) (on images), and a positive definite kernel
K(x,y) where  and y are two images, MMD [2] de-
fines a distance between P and (), and can be written as
MMD?(P, Q) =

Ew,w’K(mv w/) + ]Ey,y’K(ya yl) - 2Ew,yK($7 y)7

where z, ' “24 poand v,y S Q. MMD has been
successfully applied in many problems such as two-sample
testing and training generative adversarial networks. It can
be shown that MMD is equivalent to the distance between
two points in a reproducing kernel Hilbert space (induced
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by the kernel K) that represent the two distributions P, Q;
these two points are known as mean embeddings (or mean
features) of P and Q.

Given two independent samples X, := {x; }1", L p
and Y, := {y,}7, e Q, a plug-in estimator of MMD?
is given by

m

Z K(mi,mj

i,j=1

m n

ZZK(mlyj)

i=1j=1

1

1 & 2
)+ — E K(y;,y;)——

2 2 g J
n i=1 mn

A more general form of the estimator is given by
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where we have introduced weights w = (w1,..., W)
on the m points in X,,, such that w; € [0,1] for all i =
1,...,m,and ) ;" w; = 1. The weighted form in (I)) will
be useful in our task for controlling the amount of contri-
bution from each of the input images X, to the generated
images Y,,.

Kernel Mean Matching Given an input set of im-
ages X,, and weights w, kernel mean matching [1]
aims to find a set of points Y, {y;}7~, so
as to minimize the MMD. Mathematically, Y’

argming, . . 3 MMD?(X,,,Y,,, w). By interpreting K
as a similarity function on images, this formulation yields
diverse output images Y, which are similar to the input sam-
ples (in the sense that the two underlying distributions are
close).

2. Content-Addressable Image Generation

In this section, we detail our proposed procedure that
enables any implicit generative models to perform content-
based image generation. Let z be a latent random vector
(code) of an implicit generative model g such that y = g(z)
is a sample drawn from the model, where z ~ p, and p, is
a fixed prior distribution defined on a domain Z. Given a
trained model g: z — «, a kernel K (discussed in Section
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Figure 1: Given input images (blue circles), our approach
generates images (red squares) from the model g so as to
match the mean feature (green triangle) of the input images
represented in a reproducing kernel Hilbert space. The input
images do not need to be in the range of g.

[1), and a set of input points X,,, = {x;}/; (content), we
propose to generate new samples Y,,, conditioned on X,,,

by solving the following optimization problem:

MMD?(Xm, {g(zi) }ie1, w) s.t. Vi, z; € Z.

2)

An illustration of our approach is presented in Figure [I]
Our approach relies on a positive definite kernel K to
specify similarity between two images. It characterizes
features of the input images that determine the output im-
ages. We propose using a kernel K which takes the form:
K(x,y) := k(E(x), E(y)), where E is a pre-trained im-
age feature extractor, and k is a simple, nonlinear kernel
(e.g., an IMQ kernel) on top of the extracted features. In
experiments, we use the inverse multi-quadric (IMQ) kernel
k(a,b) = (c* + ||a — b||3)~'/? for some ¢ > 0. We empir-
ically observe that this choice yields realistic output images
relevant to the input. To solxﬁ_@, we use Adam [5]] which

relies on the gradient V;, MMD?(X,,, {g(zi)}7,, w) to
update Z,, and find a local minimum.

,,,,,

3. Experiments

In this section, we show that our approach is able to
perform content-based image generation on many image
datasets and GAN models. Code to reproduce all the results
will be made available.

3.1. Content-Based Generation of Complex Scenes

We consider three categories of the LSUN dataset [8]]:
bedroom, bridge, tower, and use pretrained GAN models
from [[6] which were trained separately on training sam-
ples from each category. The models are based on DCGAN
architecture with additional residual connections [3]. For
content-based generation, we use the IMQ kernel with pa-
rameter ¢ = 100 and set the extractor £ to be the output of
the layer before the last fully connected layer of a pretrained
Places365-ResNet classification model [9]. This network
was trained to classify 365 unique scenes (training set com-
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prising ten million images), and is expected to be able to
capture high-level visual features of complex scenes.

Our results in Figure [3| show that in each test case, the
three generated images are highly consistent with the two
input images (from the LSUN’s test set). For instance, in
bridge#1 (test case #1 of the LSUN-bridge category in Fig-
ure [3), not only is the tone black-and-white but the bridge
structure is also well captured. In other cases such as
tower#1, our procedure appears to generate similar build-
ings as present in the input images, but with a different
viewing angle. This feat demonstrates that the proposed
procedure can generate images that are semantically simi-
lar to the input.

3.2. Compression by Matching the Mean

An interesting use case of our formulation arises when
m > n (more input images than output images). In this
case, the output mean features have fewer degrees of free-
dom than do the input mean features. As a result, for the
two mean features to match, each output image is forced
to combine visual features from multiple input images. For
this reason, we refer to this task as the compression task.
The simplest instance of this task is whenm = 2 andn = 1.
With m = 2 input images, there are two input weights: wy
and wo such that we = 1 — wy. The weight wy € [0,1]
specifies the importance of the first input image x; relative
to the second.

To illustrate the compression, we use a GAN model from
[6]] pretrained on the CelebA-HQ problem [4]. Sample im-
ages from the model are shown in Figure 2a] We set the ex-
tractor F to be the output of layer Relu3-3 of the VGG-Face
network [7]. The images generated from our procedure are
shown in Figure [2b] where we consider three independent
test cases, each defining a pair of input images (1, x2). We
observe that when the weight w; is strictly between 0 and
1, the output images contain some visual features of the two
input faces, and are consistent with both inputs.

It is worth noting that varying w; is not equivalent to
linear interpolation between the latent vector that generates
x and the latent vector that generates . In fact, there may
not exist a latent vector z such that g(z) = « for a given
image x. In our procedure, for each w1, the obtained latent
vector z,,, is such that g(z,,) is an output image whose
feature vector well approximates the mean features defined
by the input images X,,,. Simply interpolating between two
latent vectors may not give output images with this property.



(a) Unconditional samples

Input x4

(b) Generated images given two inputs 1 and 2

Figure 2: (a): Unconditional samples from the GAN model studied in 6] (trained on the CelebA-HQ dataset). (b): Generated
images from the proposed procedure given two inputs x; and &, from three independent test cases. The weight w; specifies
the emphasis on the input x; .
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Figure 3: Generated output images from our approach. In
each of the three LSUN categories, there are 2-3 test cases
(denoted by #1, ..., #3), each containing two input images
from the LSUN test set.



