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We propose a novel procedure which adds “content-
addressability” to any given unconditional implicit model
e.g., a generative adversarial network (GAN). The proce-
dure allows users to control the generative process by spec-
ifying a set (arbitrary size) of desired examples based on
which similar samples are generated from the model. The
proposed approach, based on kernel mean matching, is ap-
plicable to any generative models which transform latent
vectors to samples, and does not require retraining of the
model. Experiments on various high-dimensional image
generation problems (CelebA-HQ, LSUN bedroom, bridge,
tower) show that our approach is able to generate images
which are consistent with the input set, while retaining
the image quality of the original model. To our knowl-
edge, this is the first work that attempts to construct, at test
time, a content-addressable generative model from a trained
marginal model.

1. Background
We first briefly review maximum mean discrepancy [2],

and the kernel mean matching problem [1]. Our proposed
method (Section 2) will be based on the kernel mean match-
ing.

Maximum Mean Discrepancy (MMD) Given two dis-
tributions P,Q (on images), and a positive definite kernel
K(x,y) where x and y are two images, MMD [2] de-
fines a distance between P and Q, and can be written as
MMD2(P,Q) =

Ex,x′K(x,x′) + Ey,y′K(y,y′)− 2Ex,yK(x,y),

where x,x′
i.i.d.∼ P and y,y′

i.i.d.∼ Q. MMD has been
successfully applied in many problems such as two-sample
testing and training generative adversarial networks. It can
be shown that MMD is equivalent to the distance between
two points in a reproducing kernel Hilbert space (induced
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by the kernel K) that represent the two distributions P,Q;
these two points are known as mean embeddings (or mean
features) of P and Q.

Given two independent samples Xm := {xi}mi=1
i.i.d.∼ P

and Yn := {yi}ni=1
i.i.d.∼ Q, a plug-in estimator of MMD2

is given by
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A more general form of the estimator is given by

m∑
i,j=1

wiwjK(xi,xj) +
1

n2

n∑
i,j=1

K(yi,yj)−
2

n

m∑
i=1

wi

n∑
j=1

K(xi,yj).

=: M̂MD2(Xm, Yn,w), (1)

where we have introduced weights w := (w1, . . . , wm)
on the m points in Xm such that wi ∈ [0, 1] for all i =
1, . . . ,m, and

∑m
i=1 wi = 1. The weighted form in (1) will

be useful in our task for controlling the amount of contri-
bution from each of the input images Xm to the generated
images Yn.

Kernel Mean Matching Given an input set of im-
ages Xm and weights w, kernel mean matching [1]
aims to find a set of points Yn := {yi}ni=1 so
as to minimize the MMD. Mathematically, Y ∗n =

argmin{y1,...,yn} M̂MD2(Xm, Yn,w). By interpreting K
as a similarity function on images, this formulation yields
diverse output images Yn which are similar to the input sam-
ples (in the sense that the two underlying distributions are
close).

2. Content-Addressable Image Generation
In this section, we detail our proposed procedure that

enables any implicit generative models to perform content-
based image generation. Let z be a latent random vector
(code) of an implicit generative model g such that y = g(z)
is a sample drawn from the model, where z ∼ pz and pz is
a fixed prior distribution defined on a domain Z . Given a
trained model g : z 7→ x, a kernel K (discussed in Section
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Input images Xm

Output images Yn

– Output range of g

Matched mean

Figure 1: Given input images (blue circles), our approach
generates images (red squares) from the model g so as to
match the mean feature (green triangle) of the input images
represented in a reproducing kernel Hilbert space. The input
images do not need to be in the range of g.

1), and a set of input points Xm = {xi}mi=1 (content), we
propose to generate new samples Yn, conditioned on Xm,
by solving the following optimization problem:

min
Zn:={z1,...,zn}

M̂MD2(Xm, {g(zi)}ni=1,w) s.t. ∀i,zi ∈ Z.

(2)
An illustration of our approach is presented in Figure 1.

Our approach relies on a positive definite kernel K to
specify similarity between two images. It characterizes
features of the input images that determine the output im-
ages. We propose using a kernel K which takes the form:
K(x,y) := k(E(x), E(y)), where E is a pre-trained im-
age feature extractor, and k is a simple, nonlinear kernel
(e.g., an IMQ kernel) on top of the extracted features. In
experiments, we use the inverse multi-quadric (IMQ) kernel
k(a, b) = (c2 + ‖a− b‖22)−1/2 for some c > 0. We empir-
ically observe that this choice yields realistic output images
relevant to the input. To solve (2), we use Adam [5] which

relies on the gradient ∇Zn
M̂MD2(Xm, {g(zi)}ni=1,w) to

update Zn and find a local minimum.

3. Experiments

In this section, we show that our approach is able to
perform content-based image generation on many image
datasets and GAN models. Code to reproduce all the results
will be made available.

3.1. Content-Based Generation of Complex Scenes

We consider three categories of the LSUN dataset [8]:
bedroom, bridge, tower, and use pretrained GAN models
from [6] which were trained separately on training sam-
ples from each category. The models are based on DCGAN
architecture with additional residual connections [3]. For
content-based generation, we use the IMQ kernel with pa-
rameter c = 100 and set the extractor E to be the output of
the layer before the last fully connected layer of a pretrained
Places365-ResNet classification model [9]. This network
was trained to classify 365 unique scenes (training set com-

prising ten million images), and is expected to be able to
capture high-level visual features of complex scenes.

Our results in Figure 3 show that in each test case, the
three generated images are highly consistent with the two
input images (from the LSUN’s test set). For instance, in
bridge#1 (test case #1 of the LSUN-bridge category in Fig-
ure 3), not only is the tone black-and-white but the bridge
structure is also well captured. In other cases such as
tower#1, our procedure appears to generate similar build-
ings as present in the input images, but with a different
viewing angle. This feat demonstrates that the proposed
procedure can generate images that are semantically simi-
lar to the input.

3.2. Compression by Matching the Mean

An interesting use case of our formulation arises when
m > n (more input images than output images). In this
case, the output mean features have fewer degrees of free-
dom than do the input mean features. As a result, for the
two mean features to match, each output image is forced
to combine visual features from multiple input images. For
this reason, we refer to this task as the compression task.
The simplest instance of this task is whenm = 2 and n = 1.
With m = 2 input images, there are two input weights: w1

and w2 such that w2 = 1 − w1. The weight w1 ∈ [0, 1]
specifies the importance of the first input image x1 relative
to the second.

To illustrate the compression, we use a GAN model from
[6] pretrained on the CelebA-HQ problem [4]. Sample im-
ages from the model are shown in Figure 2a. We set the ex-
tractorE to be the output of layer Relu3-3 of the VGG-Face
network [7]. The images generated from our procedure are
shown in Figure 2b, where we consider three independent
test cases, each defining a pair of input images (x1,x2). We
observe that when the weight w1 is strictly between 0 and
1, the output images contain some visual features of the two
input faces, and are consistent with both inputs.

It is worth noting that varying w1 is not equivalent to
linear interpolation between the latent vector that generates
x1 and the latent vector that generates x2. In fact, there may
not exist a latent vector z such that g(z) = x for a given
image x. In our procedure, for each w1, the obtained latent
vector zw1 is such that g(zw1) is an output image whose
feature vector well approximates the mean features defined
by the input images Xm. Simply interpolating between two
latent vectors may not give output images with this property.
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Kernel Mean Matching for Content Addressability of GANs
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(b) Generated images given two inputs x1 and x2

Figure 4: Compression: generate one image so as to match the (weighted) mean feature of the two input images. (a):
Unconditional samples from the GAN model studied in Mescheder et al. (2018) (trained on the CelebA-HQ dataset). (b):
Generated images from the proposed procedure given two inputs x1 and x2 from three independent test cases. The weight
w1 specifies the emphasis on the input x1.

changed at run time, without retraining the marginal gener-
ative model.

5.3. Compression by Matching the Mean

An interesting special case of our formulation is when
m > n (more input images than output images). In this
case, the output mean embedding µ̂Q has fewer degrees of
freedom than the input mean embedding µ̂P,w in the sense
that there are fewer summands. As a result, for the two
mean embeddings to match, each output image is forced
to combine features from multiple input images. For this
reason, we refer to this task as the compression task. The
simplest instance of this task is when m = 2 and n = 1.
With m = 2 input images, the (weighted) input mean em-
bedding can be written as

µ̂P,w = w1k(E(x1), ·) + (1− w1)k(E(x2), ·),
where w1 ∈ [0, 1] specifies the importance of the first input
image x1 relative to the second. The weight w1 gives an
extra freedom to control how much the first input image
contributes to the mean feature that should be matched by
the output mean embedding.

To illustrate the compression, we use a GAN model from
Mescheder et al. (2018) pretrained on the CelebA-HQ
problem (Karras et al., 2017). Sample images from the
model are shown in Figure 4a (more in Figure 11 in the ap-
pendix). We use the same IMQ kernel as used previously,
and set the extractor E to be the output of layer Relu3-3
of the VGG-Face3 network (Parkhi et al., 2015). The im-
ages generated from our procedure are shown in Figure 4b,
where we consider three independent test cases, each defin-
ing a pair of input images (x1,x2). We observe that when

3Pretrained VGG-Face models are available at http://
www.robots.ox.ac.uk/~vgg/software/vgg_face/.

the weight wq is strictly between 0 and 1, the output im-
ages contain some visual features of the two input faces,
and are consistent with both inputs. It is worth noting that
varying w1 is not equivalent to linear interpolation between
the latent vector that generates x1 and the latent vector that
generates x2. In fact, there may not exist a latent vector
z such that g(z) = x for a given image x. In our proce-
dure, for each w1, the obtained latent vector zw1

satisfies
zw1

= argmaxz ‖µ̂P,w−k(E(g(z), ·))‖2H and is such that
g(zw1

) is an image whose feature vector matches the mean
feature defined by µ̂P,w. Simply interpolating between two
latent vectors may not give images with this property.

5.4. Content-Based Generation of Complex Scenes

In the final experiment, we demonstrate our content-based
generation method in its full generality (i.e., m > 1 and
n > 1) on images of complex scenes. We consider three
categories of the LSUN dataset (Yu et al., 2015): bed-
room, bridge, tower, and use pretrained GAN models from
Mescheder et al. (2018) which were trained separately on
training samples from each category. The models are based
on DCGAN architecture with additional residual connec-
tions (He et al., 2016). Unconditional samples from these
models can be found in Figures 8, 9 and 10, respectively
in the appendix. For content-based generation, we use the
IMQ kernel with parameter c = 100 and set the extractor
E to be the output of the layer before the last fully con-
nected layer of a pretrained Places365-ResNet classifica-
tion model (Zhou et al., 2017).4 This network was trained
to classify 365 unique scenes (training set comprising ten
million images), and is expected to be able to capture high-
level visual features of complex scenes.

4Pretrained Places365 networks are available at: https://
github.com/CSAILVision/places365.

(b) Generated images given two inputs x1 and x2

Figure 2: (a): Unconditional samples from the GAN model studied in [6] (trained on the CelebA-HQ dataset). (b): Generated
images from the proposed procedure given two inputs x1 and x2 from three independent test cases. The weight w1 specifies
the emphasis on the input x1.
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Kernel Mean Matching for Content Addressability of GANs

Our results in Figure 5 show that in each test case, the
three generated images are highly consistent with the two
input images (from the LSUN’s test set). For instance, in
bridge#1 (test case #1 of the LSUN-bridge category in Fig-
ure 5), not only is the tone black-and-white but the bridge
structure is also well captured. In other cases such as
tower#1, our procedure appears to generate similar build-
ings as present in the input images, but with a different
viewing angle. This feat demonstrates that the proposed
procedure can generate images that are semantically simi-
lar to the input. Our procedure does not degrade the quality
of the generated images (compare to unconditional samples
in Figures 8, 9 and 10).

6. Discussion and Outlook
We have presented a procedure for constructing a content-
based generator by leveraging existing pretrained uncondi-
tional generative models. To our knowledge, this is the first
work that addresses this setting, at test time, and without re-
training the underlying models. The experiments on natural
images (LSUN classes and CelebA-HQ) indicate that our
procedure is largely agnostic with regard to the choice of
generator, and produces images that are of the same quality
as sampled unconditionally from the model.

We have made the first step towards more flexible proce-
dures that have yet to come for content-based generation
at test time. There are opportunities for improvement in
the present work. For instance, one topic of current re-
search is on theoretically grounded, quantitative measure
of the coherence between input and output sets of images.
Unlike quantitative evaluation of GAN models where large
collections of real and generated images are compared by
measuring their distance (possibly with FID (Heusel et al.,
2017) or KID (Bińkowski et al., 2018)), it may not be statis-
tically efficient to treat our case in the same way since both
the input and output sets are typically much smaller. On
the other extreme, similarity measures for pairs of images
have been extensively studied (see Zhang et al. (2018) and
references therein). It is however not clear how to adapt
these measures to our case where we have sets, and feature
combination (as shown in Figure 4b).
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Figure 5: Generated output images from our approach. In
each of the three LSUN categories, there are four test cases
(denoted by #1, . . ., #4), each containing two input images
from the LSUN test set.
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Our results in Figure 5 show that in each test case, the
three generated images are highly consistent with the two
input images (from the LSUN’s test set). For instance, in
bridge#1 (test case #1 of the LSUN-bridge category in Fig-
ure 5), not only is the tone black-and-white but the bridge
structure is also well captured. In other cases such as
tower#1, our procedure appears to generate similar build-
ings as present in the input images, but with a different
viewing angle. This feat demonstrates that the proposed
procedure can generate images that are semantically simi-
lar to the input. Our procedure does not degrade the quality
of the generated images (compare to unconditional samples
in Figures 8, 9 and 10).

6. Discussion and Outlook
We have presented a procedure for constructing a content-
based generator by leveraging existing pretrained uncondi-
tional generative models. To our knowledge, this is the first
work that addresses this setting, at test time, and without re-
training the underlying models. The experiments on natural
images (LSUN classes and CelebA-HQ) indicate that our
procedure is largely agnostic with regard to the choice of
generator, and produces images that are of the same quality
as sampled unconditionally from the model.

We have made the first step towards more flexible proce-
dures that have yet to come for content-based generation
at test time. There are opportunities for improvement in
the present work. For instance, one topic of current re-
search is on theoretically grounded, quantitative measure
of the coherence between input and output sets of images.
Unlike quantitative evaluation of GAN models where large
collections of real and generated images are compared by
measuring their distance (possibly with FID (Heusel et al.,
2017) or KID (Bińkowski et al., 2018)), it may not be statis-
tically efficient to treat our case in the same way since both
the input and output sets are typically much smaller. On
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have been extensively studied (see Zhang et al. (2018) and
references therein). It is however not clear how to adapt
these measures to our case where we have sets, and feature
combination (as shown in Figure 4b).
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(denoted by #1, . . ., #4), each containing two input images
from the LSUN test set.
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Our results in Figure 5 show that in each test case, the
three generated images are highly consistent with the two
input images (from the LSUN’s test set). For instance, in
bridge#1 (test case #1 of the LSUN-bridge category in Fig-
ure 5), not only is the tone black-and-white but the bridge
structure is also well captured. In other cases such as
tower#1, our procedure appears to generate similar build-
ings as present in the input images, but with a different
viewing angle. This feat demonstrates that the proposed
procedure can generate images that are semantically simi-
lar to the input. Our procedure does not degrade the quality
of the generated images (compare to unconditional samples
in Figures 8, 9 and 10).

6. Discussion and Outlook
We have presented a procedure for constructing a content-
based generator by leveraging existing pretrained uncondi-
tional generative models. To our knowledge, this is the first
work that addresses this setting, at test time, and without re-
training the underlying models. The experiments on natural
images (LSUN classes and CelebA-HQ) indicate that our
procedure is largely agnostic with regard to the choice of
generator, and produces images that are of the same quality
as sampled unconditionally from the model.

We have made the first step towards more flexible proce-
dures that have yet to come for content-based generation
at test time. There are opportunities for improvement in
the present work. For instance, one topic of current re-
search is on theoretically grounded, quantitative measure
of the coherence between input and output sets of images.
Unlike quantitative evaluation of GAN models where large
collections of real and generated images are compared by
measuring their distance (possibly with FID (Heusel et al.,
2017) or KID (Bińkowski et al., 2018)), it may not be statis-
tically efficient to treat our case in the same way since both
the input and output sets are typically much smaller. On
the other extreme, similarity measures for pairs of images
have been extensively studied (see Zhang et al. (2018) and
references therein). It is however not clear how to adapt
these measures to our case where we have sets, and feature
combination (as shown in Figure 4b).
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Figure 5: Generated output images from our approach. In
each of the three LSUN categories, there are four test cases
(denoted by #1, . . ., #4), each containing two input images
from the LSUN test set.

(c) LSUN-tower

Figure 3: Generated output images from our approach. In
each of the three LSUN categories, there are 2-3 test cases
(denoted by #1, . . ., #3), each containing two input images
from the LSUN test set.
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